Skip to main content

Alkaliphilic Prokaryotes

  • Reference work entry
The Prokaryotes

Abstract

Alkaliphilic bacteria are widely distributed extremophiles, some of which grow in alkaline niches in which the pH is above 12. These niches include alkaline soda lakes, which are found throughout the world, providing natural enrichments for an impressively diverse array of alkaliphiles. They are also found in more specialized alkaline niches such as the hindguts of certain insects, as well as in soil, marine, and man-made niches. Alkaliphiles are represented in a large number of bacterial genera and physiological types, but share common challenges that include cytoplasmic pH homeostasis and associated problems of bioenergetic work, function of surface-associated and secreted proteins that must function at very high pH, and acquisition of iron and other ions that are at low bioavailability. Studies of the solutions used by alkaliphiles to solve these problems have provided fundamental biological insights and identified transporters and channels that have impact beyond alkaliphiles, including the Mrp family of antiporters, the NaChBac family of channels, and two new types of flagellar stator channels. Alkaliphile enzymes have long been applied to diverse biotechnological uses. There is great potential for expanded use of both alkaliphile enzymes and other products because of the rapid pace of identification of new alkaliphiles, the availability of genomic and metagenomic data, and increasing insights into adaptations involved in alkaliphily obtained from combined structural and phylogenetic data. Through molecular bioengineering, these insights can be tested and applied. Similarly, the expansion of information about the capabilities of alkaliphiles promises increasing use of the organisms themselves in bioprocessing and bioremediation settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aino K, Hirota K, Matsuno T, Morita N, Nodasaka Y, Fujiwara T, Matsuyama H, Yoshimune K, Yumoto I (2008) Bacillus polygoni sp. nov., a moderately halophilic, non-motile obligate alkaliphile isolated from indigo balls. Int J Syst Evol Microbiol 58:120–124

    Article  PubMed  CAS  Google Scholar 

  • Aono R (1987) Characterization of structural components of cell walls of alkaliphilic strain of Bacillus sp. C-125. Biochem J 245:467–472

    PubMed  CAS  Google Scholar 

  • Aono R, Horikoshi K (1983) Chemical composition of cell walls of alkalophilic strains of Bacillus. J Gen Microbiol 129:1083–1087

    CAS  Google Scholar 

  • Aono A, Horikoshi K (1991) Carotenes produced by alkaliphilic yellow-pigmented strains of Bacillus. Agric Biol Chem 55:2643–2645

    Article  CAS  Google Scholar 

  • Aono R, Ohtani M (1990) Loss of alkalophily in cell-wall-component-defective mutants derived from alkalophilic Bacillus C-125 Isolation and partial characterization of the mutants. Biochem J 266:933–936

    PubMed  CAS  Google Scholar 

  • Aono R, Uramoto M (1986) Presence of fucosamine in teichuronic acid of the alkalophilic Bacillus strain C-125. Biochem J 233:291–294

    PubMed  CAS  Google Scholar 

  • Aono R, Horikoshi K, Goto S (1984) Composition of the peptidoglycan of alkalophilic Bacillus spp. J Bacteriol 157:688–689

    PubMed  CAS  Google Scholar 

  • Aono R, Ogino H, Horikoshi K (1992) pH-dependent flagella formation by facultative alkaliphilic Bacillus sp. C-125. Biosci Biotechnol Biochem 56:48–53

    Article  PubMed  CAS  Google Scholar 

  • Aono R, Hayakawa A, Hashimoto M, Kaneko H, Nakamura S, Horikoshi K (1993a) Cloning of a gene required for the alkaliphily of alkaliphilic Bacillus sp. strain C-125. Nucleic Acids Symp Ser 29:139–140

    PubMed  CAS  Google Scholar 

  • Aono R, Ito M, Horikoshi K (1993b) Occurrence of teichuronopeptide in cell walls of group 2 alkaliphilic Bacillus spp. J Gen Microbiol 139:2739–2744

    CAS  Google Scholar 

  • Aono R, Ito M, Machida T (1999) Contribution of the cell wall component teichuronopeptide to pH homeostasis and alkaliphily in the alkaliphile Bacillus lentus C-125. J Bacteriol 181:6600–6606

    PubMed  CAS  Google Scholar 

  • Arechaga I, Jones PC (2001) The rotor in the membrane of the ATP synthase and relatives. FEBS Lett 494:1–5

    Article  PubMed  CAS  Google Scholar 

  • Asai Y, Kojima S, Kato H, Nishioka N, Kawagishi I, Homma M (1997) Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium. J Bacteriol 179:5104–5110

    PubMed  CAS  Google Scholar 

  • Asao M, Pinkart HC, Madigan MT (2011) Diversity of extremophilic purple phototrophic bacteria in Soap Lake, a Central Washington (USA) soda lake. Environ Microbiol. doi:10.1111/j.1462-2920.2011.02449x

    Google Scholar 

  • Atsumi T, McCarter L, Imae Y (1992) Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature 355:182–184

    Article  PubMed  CAS  Google Scholar 

  • Bakels RH, van Walraven HS, Krab K, Scholts MH, Kraayenhof R (1993) On the activation mechanism of the H+-ATP synthase and unusual thermodynamic properties in the alkalophilic cyanobacterium Spirulina platensis. Eur J Biochem 213:957–964

    Article  PubMed  CAS  Google Scholar 

  • Banciu H, Sorokin DY, Kleerebezem R, Muyzer G, Galinski EA, Kuenen JG (2004) Growth kinetics of haloalkaliphilic, sulfur-oxidizing bacterium Thioalkalivibrio versutus strain ALJ 15 in continuous culture. Extremophiles 8:185–192

    Article  PubMed  CAS  Google Scholar 

  • Banciu HL, Sorokin DY, Tourova TP, Galinski EA, Muntyan MS, Kuenen JG, Muyzer G (2008) Influence of salts and pH on growth and activity of a novel facultatively alkaliphilic, extremely salt-tolerant, obligately chemolithoautotrophic sufur-oxidizing Gammaproteobacterium Thioalkalibacter halophilus gen. nov., sp. nov. from South-Western Siberian soda lakes. Extremophiles 12:391–404

    Article  PubMed  CAS  Google Scholar 

  • Belkin S, Boussiba S (1991) Resistance of Spirulina platensis to ammonia at high pH values. Plant Cell Physiol 32:953–958

    CAS  Google Scholar 

  • Biegel E, Müler V (2010) Bacterial Na+-translocating ferredoxin: NAD+ oxidoreductase. Proc Natl Acad Sci USA 107:18138–18142

    Article  PubMed  CAS  Google Scholar 

  • Biegel E, Schmidet S, Gonzalez JM, Müller V (2011) Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell Mol Life Sci 68:613–634

    Article  PubMed  CAS  Google Scholar 

  • Blum JS, Bindi AB, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30

    Article  CAS  Google Scholar 

  • Bowers KJ, Mesbah NM, Wiegel J (2009) Biodiversity of poly-extremophilic Bacteria: Does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Saline Systems 5:9

    Article  PubMed  CAS  Google Scholar 

  • Brändén M, Sandén T, Brzezinski P, Widengren J (2006) Localized proton microcircuits at the biological membrane-water interface. Proc Natl Acad Sci USA 103:19766–19770

    Article  PubMed  CAS  Google Scholar 

  • Brown SD, Begemann MB, Mormile MR, Wall JD, Han CS, Goodwin LA, Pitluck S, Land ML, Hauser LJ, Elias DA (2011) Complete genome sequence of the haloalkaliphilic, hydrogen-producing bacterium Halanaerobium hydrogeniformans. J Bacteriol 193:3682–3683

    Article  PubMed  CAS  Google Scholar 

  • Bryantseva I, Gorlenko VM, Kompantseva EI, Imhoff JF, Suling J, Mityushina L (1999) Thiorhodospira sibirica gen. Nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake. Int J Syst Bacteriol 49:697–703

    Article  PubMed  Google Scholar 

  • Charalambous K, Wallace BA (2011) NaChBac: the long lost sodium channel ancestor. Biochemistry 50:6742–6752

    Article  PubMed  CAS  Google Scholar 

  • Cherepanov DA, Junge W, Mulkdjanian AY (2004) Proton transfer dynamics at the membrane/water interface: dependence on the fixed and mobile pH buffers, on the size and form of membrane particles, and on the interfacial potential barrier. Biophys J 86:665–680

    Article  PubMed  CAS  Google Scholar 

  • Ciferri O (1983) Spirulina, the edible microorganism. Microbiol Rev 47:551–578

    PubMed  CAS  Google Scholar 

  • Clejan S, Krulwich TA, Mondrus KR, Seto-Young D (1986) Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. J Bacteriol 168:334–340

    PubMed  CAS  Google Scholar 

  • de Graaff M, Bijmans MFM, Abbas B, Euverink G-JW, Muyzer G, Janssen AJH (2011) Biological treatment of refinery spent caustics under halo-alkaline conditions. Bioresource Technol 102:7257–7264

    Article  CAS  Google Scholar 

  • Dimroth P, Cook GM (2004) Bacterial Na+ - or H+ -coupled ATP synthases operating at low electrochemical potential. Adv Microb Physiol 49:175–218

    Article  PubMed  CAS  Google Scholar 

  • Dubnovitsky AP, Kapetaniou EG, Papageorgiou AC (2005) Enzyme adaptation to alkaline pH: atomic resolution (1.08 A) structure of phosphoserine aminotransferase from Bacillus alcalophilus. Protein Sci 14:97–110

    Article  PubMed  CAS  Google Scholar 

  • Efremov RG, Sazanov LA (2011a) Respiratory complex I: 'steam engine' of the cell? Curr Opin Struct Biol 21:532–540

    Article  PubMed  CAS  Google Scholar 

  • Efremov RG, Sazanov LA (2011b) Structure of the membrane domain of respiratory complex I. Nature 476:414–420

    Article  PubMed  CAS  Google Scholar 

  • Efremov RG, Bardaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465:441–445

    Article  PubMed  CAS  Google Scholar 

  • Enomoto K, Koyama N (1999) Effect of growth pH on the phospholipid contents of the membranes from alkaliphilic bacteria. Curr Microbiol 39:270–273

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SA, Keis S, Cook GM (2006) Biochemical and molecular characterization of a Na+-translocating F1Fo-ATPase from the thermoalkaliphilic bacterium Clostridium paradoxum. J Bacteriol 188:5045–5054

    Article  PubMed  CAS  Google Scholar 

  • Foti M, Ma S, Sorokin DY, Rademaker JL, Kuenen JG, Muyzer G (2006) Genetic diversity and biogeography of haloalkaliphilic sulphur-oxidizing bacteria belonging to the genus Thioalkalivibrio. FEMS Microbiol Ecol 56:95–101

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T, Scheide D (2000) The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett 479:1–5

    Article  PubMed  CAS  Google Scholar 

  • Fujinami S, Fujisawa M (2010) Industrial application of alkaliphiles and their enzymes – past, present and future. Environ Technol 31:845–856

    Article  PubMed  CAS  Google Scholar 

  • Fujinami S, Sato T, Trimmer JS, Spiller BW, Clapham DE, Krulwich TA, Kawagishi I, Ito M (2007a) The voltage-gated Na+ channel NaVBP co-localizes with methyl-accepting chemotaxis protein at cell poles of alkaliphilic Bacillus pseudofirmus OF4. Microbiology 153:4027–4038

    Article  PubMed  CAS  Google Scholar 

  • Fujinami S, Terahara N, Lee S, Ito M (2007b) Na+ and flagella-dependent swimming of alkaliphilic Bacillus pseudofirmus OF4: a basis for poor motility at low pH and enhancement in viscous media in an “up-motile” variant. Arch Microbiol 187:239–247

    Article  PubMed  CAS  Google Scholar 

  • Fujinami S, Terahara N, Krulwich TA, Ito M (2009) Motility and chemotaxis in alkaliphilic Bacillus species. Future Microbiol 4:1137–1149

    Article  PubMed  CAS  Google Scholar 

  • Fujisawa M, Fackelmayer O, Liu J, Krulwich TA, Hicks DB (2010) The ATP synthase a-subunit of extreme alkaliphiles is a distinct variant. J Biol Chem 285:32105–32115

    Article  PubMed  CAS  Google Scholar 

  • Georgievskii Y, Medvedev ES, Stuchebrukhov AA (2002) Proton transport via the membrane surface. Biophys J 82:2833–2846

    Article  PubMed  CAS  Google Scholar 

  • Ghauri MA, Khalid AM, Grant S, Grant WD, Heaphy S (2006) Phylogenetic analysis of bacterial isolates from man-made high-pH, high-salt environments and identification of gene-cassette-associated open reading frames. Curr Microbiol 52:487–492

    Article  PubMed  CAS  Google Scholar 

  • Gibson T (1934) An investigation of the Bacillus pasteuri group II. Special physiology of the organisms. J Bacteriol 28:313–322

    PubMed  CAS  Google Scholar 

  • Gilmour R, Krulwich TA (1997) Construction and characterization of a mutant of alkaliphilic Bacillus firmus OF4 with a disrupted cta operon and purification of a novel cytochrome bd. J Bacteriol 179:863–870

    PubMed  CAS  Google Scholar 

  • Gilmour R, Messner P, Guffanti AA, Kent R, Scheberl A, Kendrick N, Krulwich TA (2000) Two-dimensional gel electrophoresis analyses of pH-dependent protein expression in facultatively alkaliphilic Bacillus pseudofirmus OF4 lead to characterization of an S-layer protein with a role in alkaliphily. J Bacteriol 182:5969–5981

    Article  PubMed  CAS  Google Scholar 

  • Gorlenko VM, Tsapin S, Namsaraev Z, Teal T, Tourova TP, Engler D, Mielke R, Nealson K (2004) Anaerobranca californiensis sp. nov., an anaerobic, alkalithermophilic, fermentative bacterium isolated from a hot spring on Mono Lake. Int J Syst Evol Microbiol 54:739–743

    Article  PubMed  CAS  Google Scholar 

  • Goto T, Matsuno T, Hishinuma-Narisawa M, Yamazaki K, Matsuyama H, Inoue N, Yumoto I (2005) Cytochrome c and bioenergetic hypothetical model for alkaliphilic Bacillus spp. J Biosci Bioeng 100:365–379

    Article  PubMed  CAS  Google Scholar 

  • Grant WD, Tindall BJ, Herbert RA, Codd GA (1986) The alkaline saline environment. In: Microbes in extreme environments. Academic, London

    Google Scholar 

  • Grant WD, Gerday C, Glansdorff N (2003) Alkaline environments and biodiversity. In: Extremophiles (life under extreme external conditions). Eolss, Oxford, UK, On-line publication http://www.eolss.net

  • Guffanti AA, Hicks DB (1991) Molar growth yields and bioenergetic parameters of extremely alkaliphilic Bacillus species in batch cultures, and growth in a chemostat at pH 10.5. J Gen Microbiol 137:2375–2379

    PubMed  CAS  Google Scholar 

  • Guffanti AA, Susman P, Blanco R, Krulwich TA (1978) The protonmotive force and a-aminoisobutyric acid transport in an obligately alkalophilic bacterium. J Biol Chem 253:708–715

    PubMed  CAS  Google Scholar 

  • Guffanti AA, Blanco R, Benenson RA, Krulwich TA (1980) Bioenergetic properties of alkaline-tolerant and alkalophilic strains of Bacillus firmus. J Gen Microbiol 119:79–86

    CAS  Google Scholar 

  • Guffanti AA, Finkelthal O, Hicks DB, Falk L, Sidhu A, Garro A, Krulwich TA (1986) Isolation and characterization of new facultatively alkalophilic strains of Bacillus species. J Bacteriol 167:766–773

    PubMed  CAS  Google Scholar 

  • Gupta R, Berg QK, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32

    Article  PubMed  CAS  Google Scholar 

  • Haines TH, Dencher NA (2002) Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Lett 528:35–39

    Article  PubMed  CAS  Google Scholar 

  • Hamamoto T, Hashimoto M, Hino M, Kitada M, Seto Y, Kudo T, Horikoshi K (1994) Characterization of a gene responsible for the Na+/H+ antiporter system of alkalophilic Bacillus species strain C-125. Mol Microbiol 14:939–946

    Article  PubMed  CAS  Google Scholar 

  • Häse CC, Barquera B (2001) Role of sodium bioenergetics in Vibrio cholerae. Biochim Biophys Acta 1505:168–178

    Google Scholar 

  • Heberle J, Dencher NA (1990) Bacteriorhodopsin in ice. Accelerated proton transfer from the purple membrane surface. FEBS Lett 277:277–280

    Article  PubMed  CAS  Google Scholar 

  • Heberle J, Dencher NA (1992) Surface-bound optical probes monitor proton translocation and surface potential changes during the bacteriorhodopsin photocycle. Proc Natl Acad Sci USA 89:5996–6000

    Article  PubMed  CAS  Google Scholar 

  • Hicks DB, Krulwich TA (1995) The respiratory chain of alkaliphilic bacteria. Biochim Biophys Acta 1229:303–314

    Article  PubMed  Google Scholar 

  • Hicks DB, Liu J, Fujisawa M, Krulwich TA (2010) F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. Biochim Biophys Acta 1797:1362–1377

    Article  PubMed  CAS  Google Scholar 

  • Hiramatsu T, Kodama K, Kuroda T, Mizushima T, Tsuchiya T (1998) A putative multisubunit Na+/H+ antiporter from Staphylococcus aureus. J Bacteriol 180:6642–6648

    PubMed  CAS  Google Scholar 

  • Hirota N, Imae Y (1983) Na+-driven flagellar motors of an alkalophilic Bacillus strain YN-1. J Biol Chem 258:10577–10581

    PubMed  CAS  Google Scholar 

  • Hirota N, Kitada M, Imae Y (1981) Flagellar motors of alkalophilic Bacillus are powered by an electrochemical potential gradient of Na+. FEBS Lett 132:278–280

    Article  CAS  Google Scholar 

  • Horikoshi K (1996) Alkaliphiles–-from an industrial point of view. FEMS Microbiol Lett 18:259–270

    CAS  Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750

    PubMed  CAS  Google Scholar 

  • Horikoshi K (2006) Introduction. In: Alkaliphiles, genetic properties and application of enzymes. Springer, Berlin, pp 3–5

    Google Scholar 

  • Horikoshi K, Akiba T (1982) Alkalophilic Microorganisms. Springer, Heideberg

    Google Scholar 

  • Horikoshi K, Bull AT (2011) Prologue: definition, categories, distribution, origin and evolution, pioneering studies and emerging fields. In: Horikoshi K, Antranikan G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook. Springer, Berlin, pp 4–15

    Chapter  Google Scholar 

  • Ito M, Aono R (2002) Decrease in cytoplasmic pH-homeostatic activity of the alkaliphile Bacillus lentus C-125 by a cell wall defect. Biosci Biotechnol Biochem 66:218–220

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Guffanti AA, Zemsky J, Ivey DM, Krulwich TA (1997) Role of the nhaC-encoded Na+/H+ antiporter of alkaliphilic Bacillus firmus OF4. J Bacteriol 179:3851–3857

    PubMed  CAS  Google Scholar 

  • Ito S, Kobayashi T, Ara K, Ozaki K, Kawai S, Hatada Y (1998) Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles 2:185–190

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Guffanti AA, Oudega B, Krulwich TA (1999) mrp, a multigene, multifunctional locus in Bacillus subtilis with roles in resistance to cholate and to Na+ and in pH homeostasis. J Bacteriol 181:2394–2402

    PubMed  CAS  Google Scholar 

  • Ito M, Guffanti AA, Wang W, Krulwich TA (2000) Effects of nonpolar mutations in each of the seven Bacillus subtilis mrp genes suggest complex interactions among the gene products in support of Na+ and alkali but not cholate resistance. J Bacteriol 182:5663–5670

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Hicks DB, Henkin TM, Guffanti AA, Powers B, Zvi L, Uematsu K, Krulwich TA (2004a) MotPS is the stator-force generator for motility of alkaliphilic Bacillus and its homologue is a second functional Mot in Bacillus subtilis. Mol Microbiol 53:1035–1049

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Xu H, Guffanti AA, Wei Y, Zvi L, Clapham DE, Krulwich TA (2004b) The voltage-gated Na+ channel NavBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus. Proc Natl Acad Sci USA 101:10566–10571

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Terahara N, Fujinami S, Krulwich TA (2005) Properties of motility in Bacillus subtilis powered by the H+-coupled MotAB flagellar stator, Na+-coupled MotPS or hybrid stators MotAS or MotPB J. Mol Biol 352:396–408

    Article  CAS  Google Scholar 

  • Ivey DM, Guffanti AA, Bossewitch JS, Padan E, Krulwich TA (1991) Molecular cloning and sequencing of a gene from alkaliphilic Bacillus firmus OF4 that functionally complements an Escherichia coli strain carrying a deletion in the nhaA Na+/H+ antiporter gene. J Biol Chem 266:23483–23489

    PubMed  CAS  Google Scholar 

  • Janto B, Ahmed A, Liu J, Hicks DB, Pagni S, Fackelmayer OJ, Smith TA, Earl J, Elbourne LDH, Hassan K, Paulsen IT, Kolsto AB, Tourasse NJ, Ehrlich GD, Boissy R, Ivey DM, Li G, Xue Y, Ma Y, Hu F, Krulwich TA (2011) The genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4. Environ Microbiol 13(12):3289–3309

    Article  PubMed  CAS  Google Scholar 

  • Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200

    Article  PubMed  CAS  Google Scholar 

  • Joshi AA, Kanekar PP, Kelkar AS, Shouche YS, Vani AA, Borgave SB, Sarnaik SS (2008) Cultivable bacterial diversity of alkaline Lonar Lake, India. Microb Ecol 55:163–172

    Article  PubMed  Google Scholar 

  • Juarez O, Morgan JE, Nilges MJ, Barquera B (2010) Energy transducing redox steps of the Na+-pumping NADH: quinone oxidoreductase from Vibrio cholerae. Proc Natl Acad Sci USA 107:12505–12510

    Article  PubMed  Google Scholar 

  • Kajiyama Y, Otagiri M, Sekiguchi J, Kosono S, Kudo T (2007) Complex formation by the mrpABCDEFG gene products, which constitute a principal Na+/H+ antiporter in Bacillus subtilis. J Bacteriol 189:7511–7514

    Article  PubMed  CAS  Google Scholar 

  • Kajiyama Y, Otagiri M, Sekiguchi J, Kudo T, Kosono S (2009) The MrpA MrpB and MrpD subunits of the Mrp antiporter complex in Bacillus subtilis contain membrane-embedded and essential acidic residues. Microbiology 155:2137–2147

    Article  PubMed  CAS  Google Scholar 

  • Kalamorz F, Keis S, McMillan DGG, Olsson K, Stanton J-A, Stockwell P, Black MA, Klingeman DM, Land ML, Han CS, Martin SL, Becher SA, Peddie CJ, Morgan HW, Matthies D, Preiss L, Meier T, Brown SD, Cook GM (2011) Draft genome sequence of the thermoalkaliphilic Caldalkalibacillus thermarum strain TA2.A1. J Bacteriol 193:4290–4291

    Article  PubMed  CAS  Google Scholar 

  • Kapetaniou EG, Thanassoulas A, Dubnovitsky AP, Nounesis G, Papageorgiou AC (2006) Effect of pH on the structure and stability of Bacillus circulans ssp. alkalophilus phosphoserine aminotransferase: thermodynamic and crystallographic studies. Proteins 63:742–753

    Article  PubMed  CAS  Google Scholar 

  • Kennedy SP, Ng WV, Salzberg SL, Hood L, DasSarma S (2001) Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res 11:1641–1650

    Article  PubMed  CAS  Google Scholar 

  • Kerscher S, Dröse S, Zickermann V, Brandt U (2008) The three families of respiratory NADH dehydrogenases results. Probl Cell Differ 45:185–222

    Article  CAS  Google Scholar 

  • Kevbrin VV, Zhilina TN, Rainey FA, Zavarzin GA (1998) Tindallia magadii gen. nov., sp. nov.: an alkaliphilic anaerobic ammonifier from soda lake deposits. Curr Microbiol 37:94–100

    Article  PubMed  CAS  Google Scholar 

  • Kevbrin VV, Romanek CS, Wiegel J (2003) Alkalithermophiles: a double challenge from extreme environments. In: Seckbach J (ed) Cellular origins, life in extreme habitats and astrobiology (COLE). Kluwer, Dordrecht

    Google Scholar 

  • Khaneja R, Perez-Fons L, Fakhry S, Baccigalupi L, Steiger S, To E, Sandmann G, Dong TC, Ricca E, Fraser PD, Cutting SM (2009) Carotenoids found in Bacillus. J Appl Microbiol 108:1889–1902

    PubMed  Google Scholar 

  • Knight CG, Kassen R, Hebestreit H, Rainey PB (2004) Global analysis of predicted proteomes: functional adaptation of physical properties. Proc Natl Acad Sci USA 101:8390–8395

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Hatada Y, Higaki N, Lusterio DD, Ozawa T, Koike K, Kawai S, Ito S (1999) Enzymatic properties and deduced amino acid sequence of a high-alkaline pectate layse from an alkaliphilic Bacillus isolate. Biochim Biophys Acta 1427:145–154

    Article  PubMed  CAS  Google Scholar 

  • Koishi R, Xu H, Ren D, Navarro B, Spiller BW, Shi Q, Clapham DE (2004) A superfamily of voltage-gated sodium channels in bacteria. J Biol Chem 279:9532–9538

    Article  PubMed  CAS  Google Scholar 

  • Koyama N (1989a) Ammonium-dependent transports of amino acids and glucose in a facultatively anaerobic alkalophile. FEBS Lett 253:187–189

    Article  CAS  Google Scholar 

  • Koyama N (1989b) Characterization of the membrane-bound ATPase from a facultatively anaerobic alkalophile. Biochim Biophys Acta 980:255–259

    Article  PubMed  CAS  Google Scholar 

  • Koyama N (1993) Stimulatory effect of NH +4 on the transport of leucine and glucose in an anaerobic alkaliphile. Eur J Biochem 217:435–439

    Article  PubMed  CAS  Google Scholar 

  • Koyama N (1996) NH +4 + Na+-activated ATPase of a facultatively anaerobic alkaliphile, Amphibacillus xylanus. Anaerobe 2:103–109

    Article  Google Scholar 

  • Koyama N, Kiyomiya A, Nosoh Y (1976) Na+-dependent uptake of amino acids by an alkalophilic Bacillus. FEBS Lett 72:77–78

    Article  PubMed  CAS  Google Scholar 

  • Krulwich TA (1995) Alkaliphiles: 'basic' molecular problems of pH tolerance and bioenergetics. Mol Microbiol 15:403–410

    Article  PubMed  CAS  Google Scholar 

  • Krulwich TA, Guffanti AA (1989) The Na+ cycle of extreme alkalophiles: a secondary Na+/H+ antiporter and Na+/solute symporters. J Bioenerg Biomembr 21:663–677

    Article  PubMed  CAS  Google Scholar 

  • Krulwich TA, Ivey DM (1990) Bioenergetics of extreme environments. In: Krulwich TA (ed) Bacterial energetics, vol 12. Academic, New York, pp 417–447

    Google Scholar 

  • Krulwich TA, Federbush JG, Guffanti AA (1985) Presence of a nonmetabolizable solute that is translocated with Na+ enhances Na+-dependent pH homeostasis in an alkalophilic Bacillus. J Biol Chem 260:4055–4058

    PubMed  CAS  Google Scholar 

  • Krulwich TA, Hicks DB, Swartz TH, Ito M (2007) Bioenergetic adaptations that support alkaliphily. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 311–329

    Google Scholar 

  • Krulwich TA, Hicks DB, Ito M (2009) Cation/proton antiporter complements of bacteria: why so large and diverse? Mol Microbiol 74:257–260

    Article  PubMed  CAS  Google Scholar 

  • Krulwich TA, Liu J, Morino M, Fujisawa M, Ito M, Hicks D (2011a) Adaptive mechanisms of extreme alkaliphiles. In: Horikoshi K, Antranikan G, Bull A, Robb FT, Stetter K (eds) Extremophiles handbook. Springer, Heidelberg, pp 120–139

    Google Scholar 

  • Krulwich TA, Sachs G, Padan E (2011b) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9:330–343

    Article  PubMed  CAS  Google Scholar 

  • Kudo T, Hino M, Kitada M, Horikoshi K (1990) DNA sequences required for the alkalophily of Bacillus sp. strain C-125 are located close together on its chromosomal DNA. J Bacteriol 172:7282–7283

    PubMed  CAS  Google Scholar 

  • Kurono Y, Horikoshi K (1973) Alkaline catalase produced by Bacillus No. Ku-1. Agric Biol Chem 37:2565–2570

    Article  Google Scholar 

  • Lau WD, Rubinstein JL (2010) Structure of intact Thermus thermophilus V-ATPase by cryo-EM reveals organization of the membrane-bound Vo motor. Proc Natl Acad Sci USA 107:1367–1372

    Article  PubMed  CAS  Google Scholar 

  • Lefevre CT, Frankel RB, Posfai M, Prozorov T, Bazylinski DA (2011) Isolation of obligately alkaliphilic magnetotactic bacteria from extremely alkaline environments. Environ Microbiol 13(8):2342–2350. doi:10.1111/j.1462-2910.2011.02505.x

    Article  PubMed  Google Scholar 

  • Leone V, Krah A, Faraldo-Gómez JD (2010) On the question of hydronium binding to ATP-synthase membrane rotors. Biophys J 99:L53–L55

    Article  PubMed  CAS  Google Scholar 

  • Lewis RJ, Prince RC, Dutton PL, Knaff DB, Krulwich TA (1981) The respiratory chain of Bacillus alcalophilus and its nonalkalophilic mutant derivative. J Biol Chem 256:10543–10549

    PubMed  CAS  Google Scholar 

  • Li Y, Mandelco L, Wiegel J (1993) Isolation and characterization of a moderately thermophilic anaerobic alkaliphile, Clostridium paradoxum sp. nov. Int J Syst Bacteriol 43:450–460

    Article  Google Scholar 

  • Li Y, Engle M, Weiss N, Mandelco L, Wiegel J (1994) Clostridium thermoalcaliphilum sp. nov., an anaerobic and thermotolerant facultative alkaliphile. Int J Syst Bacteriol 44:111–118

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Gong X, Hicks DB, Krulwich TA, Yu L, Yu CA (2007) Interaction between cytochrome caa 3 and F1F0-ATP synthase of alkaliphilic Bacillus pseudofirmus OF4 is demonstrated by saturation transfer electron paramagnetic resonance and differential scanning calorimetry assays. Biochemistry 46:306–313

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Fujisawa M, Hicks DB, Krulwich TA (2009) Characterization of the functionally critical AXAXAXA and PXXEXXP motifs of the ATP synthase c-subunit from an alkaliphilic Bacillus. J Biol Chem 284:8714–8725

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Fackelmayer OJ, Hicks DB, Preiss L, Meier T, Sobie EA, Krulwich TA (2011) Mutations in a helix-1 motif of the ATP synthase c-subunit of Bacillus pseudofirmus OF4 cause functional deficits and changes in c-ring stability and mobility on SDS-PAGE. Biochemistry 50:5497–5506

    Article  PubMed  CAS  Google Scholar 

  • Macnab RM, Castle AM (1987) A variable stoichiometry model for pH homeostasis in bacteria. Biophys J 52:637–647

    Article  PubMed  CAS  Google Scholar 

  • Mandel KG, Guffanti AA, Krulwich TA (1980) Monovalent cation/proton antiporters in membrane vesicles from Bacillus alcalophilus. J Biol Chem 255:7391–7396

    PubMed  CAS  Google Scholar 

  • Mathiesen C, Hägerhäll C (2002) Transmembrane topology of the NuoL, M and N subunits of NADH: quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochim Biophys Acta 1556:121–132

    Article  PubMed  CAS  Google Scholar 

  • Mathiesen C, Hägerhäll C (2003) The `antiporter module' of respiratory chain Complex I includes the MrpC/NuoK subunit – a revision of the modular evolution scheme. FEBS Lett 5459:7–13

    Article  CAS  Google Scholar 

  • McMillan DG, Keis S, Dimroth P, Cook GM (2007) A specific adaptation in the a subunit of thermoalkaliphilic F1FO-ATP synthase enables ATP synthesis at high pH but not at neutral pH values. J Biol Chem 282:17395–17404

    Article  PubMed  CAS  Google Scholar 

  • McMillan DG, Vetasquez I, Nunn BL, Goodlett DR, Hunter KA, Lamont I, Sander SG, Cook GM (2010) Acquisition of iron by alkaliphilic bacillus species. Appl Environ Microbiol 76:6955–6961

    Article  PubMed  CAS  Google Scholar 

  • Meier T, Polzer P, Diederichs K, Welte W, Dimroth P (2005) Structure of the rotor ring of F-Type Na+-ATPase from Ilyobacter tartaricus. Science 308:659–662

    Article  PubMed  CAS  Google Scholar 

  • Meier T, Ferguson SA, Cook GM, Dimroth P, Vonck J (2006) Structural investigations of the membrane-embedded rotor ring of the F-ATPase from Clostridium paradoxum. J Bacteriol 188:7759–7764

    Article  PubMed  CAS  Google Scholar 

  • Meier T, Morgner N, Matthies D, Pogoryelov D, Keis S, Cook GM, Dimroth P, Brutschy B (2007) A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic Bacillus sp. strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potential. Mol Microbiol 65:1181–1192

    Article  PubMed  CAS  Google Scholar 

  • Mesbah NM, Wiegel J (2008) Life at extreme limits: the anaerobic halophilic alkalithermophiles. Ann N Y Acad Sci 1125:44–57

    Article  PubMed  CAS  Google Scholar 

  • Mesbah NM, Wiegel J (2011) The Na+-translocating F1Fo-ATPase from the halophilic, alkalithermophile Natranaerobius thermophilus. Biochim Biophys Acta. doi:10.1016/j.bbabio.2011.001

    Google Scholar 

  • Mesbah NM, Abou-El-Ela SH, Wiegel J (2007) Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun Egypt. Microb Ecol 54:598–617

    Article  PubMed  CAS  Google Scholar 

  • Mesbah N, Cook G, Wiegel J (2009) The halophilic alkalithermophile Natranaerobius thermophilus adapts to multiple environmental extremes using a large repertoire of Na+(K+)/H+ antiporters. Mol Microbiol 74:270–281

    Article  PubMed  CAS  Google Scholar 

  • Miethke M, Pierik AJ, Peuckert F, Seubert A, Marahiel MA (2011) Identification and characterization of a novel-type ferric siderophore reductase from a gram-positive extremophile. J Biol Chem 286:2245–2260

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191:144–148

    Article  PubMed  CAS  Google Scholar 

  • Morino M, Natsui S, Swartz TH, Krulwich TA, Ito M (2008) Single gene deletions of mrpA to mrpG and mrpE point mutations affect activity of the Mrp Na+/H+ antiporter of alkaliphilic Bacillus and formation of hetero-oligomeric Mrp complexes. J Bacteriol 190:4162–4172

    Article  PubMed  CAS  Google Scholar 

  • Morino M, Natsui S, Ono T, Swartz TH, Krulwich TA, Ito M (2010) Single site mutations in the hetero-oligomeric Mrp antiporter from alkaliphilic Bacillus pseudofirmus OF4 that affect Na+/H+ antiport activity, sodium exclusion, individual Mrp protein levels or Mrp complex formation. J Biol Chem 285:30942–30950

    Article  PubMed  CAS  Google Scholar 

  • Mulkidjanian AY, Cherepanov DA, Heberle J, Junge W (2005) Proton transfer dynamics at membrane/water interface and mechanism of biological energy conversion. Biochemistry (Mosc) 70:251–256

    Article  CAS  Google Scholar 

  • Mulkidjanian AY, Heberle J, Cherepanov DA (2006) Protons @ interfaces: implications for biological energy conservation. Biochim Biophys Acta 1757:913–930

    Article  PubMed  CAS  Google Scholar 

  • Mulkidjanian AY, Dibrov P, Galperin MY (2008) The past and present of sodium energetics: may the sodium-motive force be with you. Biochim Biophys Acta 1777:985–992

    Article  PubMed  CAS  Google Scholar 

  • Muntyan MS, Bloch DA (2008) Study of redox potential in cytochrome c covalently bound to terminal oxidase of alkaliphilic Bacillus pseudofirmus FTU. Biochemistry (Mosc) 73:107–111

    Article  CAS  Google Scholar 

  • Muyzer G, Sorokin DY, Mavromatis K, Lapidus A, Clum A, Ivanova N, Pati A, d'Haeseleer P, Woyke T, Kyrpides NC (2011) Complete genome sequence of “Thioalkalivibrio sulfidophilus” HL-EbGr7 stand. Genomic Sci 4:23–35

    Article  CAS  Google Scholar 

  • Niimura Y, Yanagida T, Uchimura T, Ohara N, Suzuki K, Kozaki M (1987) A new facultative anaerobic xylan-using alkalophile lacking cytochrome, quinone, and catalase. Agric Biol Chem 51:2271–2275

    Article  CAS  Google Scholar 

  • Niimura Y, Koh E, Uchimura T, Ohara N, Kozaki M (1989) Aerobic and anaerobic metabolism in a facultative anaerobe Ep01 lacking cytochrome, quinone and catalase. FEMS Microbiol Lett 61:70–84

    Article  Google Scholar 

  • Niimura Y, Poole LB, Massey V (1995) Amphibacillus xylanus NADH oxidase and Salmonella typhimurium alkyl-hydroperoxide reductase flavoprotein components show extremely high scavenging activity for both alkyl hydroperoxide and hydrogen peroxide in the presence of S. typhimurium alkyl-hydroperoxide reductase 22-kDa protein component. J Biol Chem 270:25645–25650

    Article  PubMed  CAS  Google Scholar 

  • Okuno D, Iino R, Noji H (2011) Rotation and structure of F1Fo-ATP synthase. J Biochem 149:655–664

    Article  PubMed  CAS  Google Scholar 

  • Olguin-Lora P, Le Borgne S, Castorena-Cortes G, Roldan-Carrillo T, Zapata-Penasco I, Reyes-Avila J, Alcantara-Perez S (2011) Evaluation of haloalkaliphilic sulfur-oxidizing microorganisms with potential application in the effluent treatment of the petroleum industry. Biodegradation 22:83–93

    Article  PubMed  CAS  Google Scholar 

  • Olsson K, Keis S, Morgan HW, Dimroth P, Cook GM (2003) Bioenergetic properties of the thermoalkaliphilic Bacillus sp. strain TA2.A1. J Bacteriol 185:461–465

    Article  PubMed  CAS  Google Scholar 

  • Oren A (2010) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13:1908–1923

    Article  PubMed  CAS  Google Scholar 

  • Padan E, Schuldiner S (1986) Intracellular pH regulation in bacterial cells. Methods Enzymol 125:337–352

    Article  PubMed  CAS  Google Scholar 

  • Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717:67–88

    Article  PubMed  CAS  Google Scholar 

  • Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358

    Article  PubMed  CAS  Google Scholar 

  • Perez-Fons L, Steiger S, Khaneja R, Bramley PM, Cutting SM, Sandmann G, Fraser PD (2011) Identification and developmental formation of carotenoid pigments in the yellow/orange Bacillus spore-formers. Biochim Biophys Acta 1811:177–185

    Article  PubMed  CAS  Google Scholar 

  • Pogoryelov D, Sudhir PR, Kovacs L, Gombos Z, Brown I, Garab G (2003) Sodium dependency of the photosynthetic electron transport in the alkaliphilic cyanobacterium Arthrospira platensis. J Bioenerg Biomembr 35:427–437

    Article  PubMed  CAS  Google Scholar 

  • Pogoryelov D, Yu J, Meier T, Vonck J, Dimroth P, Müller DJ (2005) The c 15 ring of the Spirulina platensis F-ATP synthase: F1/F0 symmetry mismatch is not obligatory. EMBO Rep 6:1040–1044

    Article  PubMed  CAS  Google Scholar 

  • Pogoryelov D, Yildiz Ö, Faraldo-Gómez JD, Meier T (2009) High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat Struct Mol Biol 16:1068–1073

    Article  PubMed  CAS  Google Scholar 

  • Preiss L, Yildiz Ö, Hicks D, Krulwich TA, Meier T (2010) A new type of proton coordination in an F1F0-ATP synthase rotor ring. PLoS Biol 8:e1000443

    Article  PubMed  CAS  Google Scholar 

  • Prowe SG, van de Vossenberg JL, Driessen AJ, Antranikian G, Konings WN (1996) Sodium-coupled energy transduction in the newly isolated thermoalkaliphilic strain LBS3. J Bacteriol 178:4099–4104

    PubMed  CAS  Google Scholar 

  • Rabus R, Jack DL, Kelly DJ, Saier MH Jr (1999) TRAP transporters: an ancient family of extracytoplasmic solute-receptor-dependent secondary active transporters. Microbiology 145:3431–3445

    PubMed  CAS  Google Scholar 

  • Rees HC, Grant WD, Jones BE, Heaphy S (2004) Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. Extremophiles 8:63–71

    Article  PubMed  CAS  Google Scholar 

  • Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE (2001) A prokaryotic voltage-gated sodium channel. Science 294:2372–2375

    Article  PubMed  CAS  Google Scholar 

  • Roadcap GS, Sanford RA, Jin Q, Pardinas JR, Bethke CM (2006) Extremely alkaline (pH > 12) ground water hosts diverse microbial community. Ground Water 44:511–517

    Article  PubMed  CAS  Google Scholar 

  • Ruis N, Loren JG (1998) Buffering capacity and membrane H+ conductance of neutrophilic and alkalophilic gram-positive bacteria. Appl Environ Microbiol 64:1344–1349

    Google Scholar 

  • Saeki K, Ozaki K, Kobayashi T, Ito S (2007) Detergent alkaliphile proteases: enzymatic properties, genes, and crystal structures. J Biosci Bioeng 103:501–508

    Article  PubMed  CAS  Google Scholar 

  • Saier MH Jr, Tran CV, Barabote RD (2006) TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34:D181–D186

    Article  PubMed  CAS  Google Scholar 

  • Sarethy IP, Saxena Y, Kapoor A, Sharma M, Sharma SK, Gupta V, Gupta S (2011) Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol 38:769–790

    Article  PubMed  CAS  Google Scholar 

  • Schwartz R, Ting CS, King J (2001) Whole proteome pI values correlate with subcellular localizations of proteins for organisms within the three domains of life. Genome Res 11:703–709

    Article  PubMed  CAS  Google Scholar 

  • Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H, Müller DJ (2000) Proton-powered turbine of a plant motor. Nature 405:418–419

    Article  PubMed  CAS  Google Scholar 

  • Seelert H, Dencher NA, Müller DJ (2003) Fourteen protomers compose the oligomer III of the proton-rotor in spinach chloroplast ATP synthase. J Mol Biol 333:337–344

    Article  PubMed  CAS  Google Scholar 

  • Selivanov VA, Zeak JA, Roca J, Cascante M, Trucco M, Votyakova TV (2008) The role of external and matrix pH in mitochondrial reactive oxygen species generation. J Biol Chem 283:29292–29300

    Article  PubMed  CAS  Google Scholar 

  • Shioi JI, Imae Y, Oosawa F (1978) Protonmotive force and motility of Bacillus subtilis. J Bacteriol 133:1083–1088

    PubMed  CAS  Google Scholar 

  • Shirai T, Suzuki A, Yamane T, Ashida T, Kobayashi T, Hitomi J, Ito S (1997a) High-resolution crystal structure of M-protease: phylogeny aided analysis of the high-alkaline adaptation mechanism. Protein Eng 10:627–634

    Article  PubMed  CAS  Google Scholar 

  • Shirai T, Yamane T, Hidaka T, Kuyama K, Suzuki A, Ashida T, Ozaki K, Ito S (1997b) Crystallization and preliminary X-ray analysis of a truncated family A alkaline endoglucanase isolated from Bacillus sp. KSM-635. J Biochem 122:683–685

    Article  PubMed  CAS  Google Scholar 

  • Shirai T, Ishida H, Noda J, Yamane T, Ozaki K, Hakamada Y, Ito S (2001) Crystal structure of alkaline cellulase K: insight into the alkaline adaptation of an industrial enzyme. J Mol Biol 310:1079–1087

    Article  PubMed  CAS  Google Scholar 

  • Shirai T, Igarashi K, Ozawa T, Hagihara H, Kobayashi T, Ozaki K, Ito S (2007) Ancestral sequence evolutionary trace and crystal structure analyses of alkaline a-amylase from Bacillus sp. KSM-1378 to clarify the alkaline adaptation process of proteins. Proteins 66:600–610

    Article  PubMed  CAS  Google Scholar 

  • Skulachev VP (1989a) Bacterial Na+ energetics. FEBS Lett 250:106–114

    Article  PubMed  CAS  Google Scholar 

  • Skulachev VP (1989b) The sodium cycle: a novel type of bacterial energetics. J Bioenerg Biomembr 21:635–647

    Article  PubMed  CAS  Google Scholar 

  • Skulachev VP (1992) The laws of cell energetics. Eur J Biochem 208:203–209

    Article  PubMed  CAS  Google Scholar 

  • Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55:1–79

    Article  PubMed  CAS  Google Scholar 

  • Sobek H, Hecht J-J, Aehle W, Schomburg D (1992) X-ray structure determination and comparison of two crystal forms of a variant (Asn115Arg) of the alkaline protease from Bacillus alcalophilus refined at 1.85 A resolution. J Mol Biol 228:108–117

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Kuenen JG (2005a) Chemolithotrophic haloalkaliphiles from soda lakes. FEMS Microbiol Ecol 52:287–295

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Kuenen JG (2005b) Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev 29:685–702

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Cherepanov A, de Vries S, Kuenen GJ (1999) Identification of cytochrome c oxidase in the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium 'Thioalcalomicrobium aerophilum' strain AL 3. FEMS Microbiol Lett 179:91–99

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, van den Bosch PL, Abbas B, Janssen AJ, Muyzer G (2008) Microbiological analysis of the population of extremely haloalkaliphilic sulfur-oxidizing bacteria dominating in lab-scale sulfide-removing bioreactors. Appl Microbiol Biotechnol 80:965–975

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Kuenen JG, Muyzer G (2011) The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Front Microbiol 2:44

    PubMed  Google Scholar 

  • Steed PR, Fillingame RH (2009) Aqueous accessibility to the transmembrane regions of subunit c of the Escherichia coli F1F0 ATP synthase. J Biol Chem 284:23243–23250

    Article  PubMed  CAS  Google Scholar 

  • Sturr MG, Guffanti AA, Krulwich TA (1994) Growth and bioenergetics of alkaliphilic Bacillus firmus OF4 in continuous culture at high pH. J Bacteriol 176:3111–3116

    PubMed  CAS  Google Scholar 

  • Suigyama S, Matsukura H, Koyama N, Nosoh Y, Imae Y (1986) Requirement of Na+ in flagellar rotation and amino acid transport in a facultatively alkalophilic Bacillus. Biochim Biophys Acta 852:38–45

    Article  Google Scholar 

  • Sunna A, Prowe SG, Stoffregen T, Antranikian G (1997) Characterization of the xylanases from the newly isolated thermophilic xylan-degrading Bacillus thermoleovorans strain K-3d and Bacillus flavothermus strain LB3A. FEMS Microbiol Lett 148:209–216

    Article  PubMed  CAS  Google Scholar 

  • Swartz TH, Ikewada S, Ishikawa O, Ito M, Krulwich TA (2005) The Mrp system: a giant among monovalent cation/proton antiporters? Extremophiles 9:345–354

    Article  PubMed  CAS  Google Scholar 

  • Takahara Y, Tanabe O (1962) Studies on the reduction of indigo in industrial fermentation vat (XIX). Taxonomic characteristics of strain No. S-8. J Ferment Technol 40:77–80

    CAS  Google Scholar 

  • Takahara Y, Takahashi Y, Tanabe O (1961) Studies on the reduction of indigo in industrial fermentation vat (XVII). On the growth factor of strain No. S-8. J Ferment Technol 39:183–187

    CAS  Google Scholar 

  • Takami H, Kobata K, Nagahama T, Kobayashi H, Inoue A, Horikoshi K (1999) Biodiversity in deep-sea sites located near the south part of Japan. Extremophiles 3:97–102

    Article  PubMed  CAS  Google Scholar 

  • Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, Fuji F, Hirama C, Nakamura Y, Ogasawara N, Kuhara S, Horikoshi K (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28:4317–4331

    Article  PubMed  CAS  Google Scholar 

  • Takami H, Han CG, Takaki Y, Ohtsubo E (2001) Identification and distribution of new insertion sequences in the genome of alkaliphilic Bacillus halodurans C-125. J Bacteriol 183:4345–4356

    Article  PubMed  CAS  Google Scholar 

  • Takimura Y, Saito K, Okuda M, Kageyama Y, Katsuhisa S, Ozaki K, Ito S, Kobayashi T (2007) Alkaliphilic Bacillus sp. strain KSM-LD1 contains a record number of subtilisin-like proteases genes. Appl Microbiol Biotechnol 76:395–405

    Article  PubMed  CAS  Google Scholar 

  • Terahara N, Krulwich TA, Ito M (2008) Mutations alter the sodium versus proton use of a Bacillus clausii flagellar motor and confer dual ion use on Bacillus subtilis motors. Proc Natl Acad Sci USA 105:14359–14364

    Article  PubMed  CAS  Google Scholar 

  • Thongaram T, Kosono S, Ohkuma M, Hongoh Y, Kitada M, Yoshinaka T, Trakulnaleamsai S, Noparatnaraporn N, Kudo T (2003) Gut of higher termites as a niche for alkaliphiles as shown by culture-based and culture-independent studies. Microbes Environ 18:152–159

    Article  Google Scholar 

  • Thongaram T, Hongoh Y, Kosono S, Ohkuma M, Trakulnaleamsai S, Noparatnaraporn N, Kudo T (2005) Comparison of bacterial communities in the alkaline gut segment among various species of higher termites. Extremophiles 9:229–238

    Article  PubMed  Google Scholar 

  • Tomb J-F, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty GA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak GG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Hickey EK, Berg DE, Gocayne JD, Utterback TR, Peterson JD, Kelley JM, Cotton MD, Wedman JM, Fujii C, Bowman C, Watthey L, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter JC (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya K, Nakamura Y, Sakshita H, Kimura T (1992) Purification and characterization of a thermostable alkaline protease from alkalophilic Thermoactinomyces sp. HS682. Biosci Biotechnol Biochem 56:289–303

    Article  Google Scholar 

  • Valiyaveetil FI, Fillingame RH (1998) Transmembrane topography of subunit a in the Escherichia coli F1F0 ATP synthase. J Biol Chem 273:16241–16247

    Article  PubMed  CAS  Google Scholar 

  • van der Laan JC, Gerritse G, Mulleners LJ, van der Hoek RA, Quax WJ (1991) Cloning, characterization, and multiple chromosomal integration of a Bacillus alkaline protease gene. Appl Environ Microbiol 57:901–909

    PubMed  Google Scholar 

  • van der Laan JM, Teplyakov AV, Kelders H, Kalk KH, Misset O, Mulleners JSM, Dijkstra BW (1992) Crystal structure of the high-alkaline serine protease PB92 from Bacillus alcalophilus. Protein Eng 5:405–411

    Article  PubMed  Google Scholar 

  • Vedder A (1934) Bacillus alcalophilus n. sp. benevens enkele ervaringen met sterk alcalische voedingsbodems Ant. v. Leeuwenhoek. J Microbiol Serol 1:141–147

    Google Scholar 

  • von Ballmoos C, Cook GM, Dimroth P (2008) Unique rotary ATP synthase and its biological diversity. Annu Rev Biophys 37:43–64

    Article  CAS  Google Scholar 

  • von Ballmoos C, Wiedenmann A, Dimroth P (2009) Essentials for ATP synthesis by F1F0 ATP synthases. Annu Rev Biochem 78:649–672

    Article  CAS  Google Scholar 

  • Wang Z, Hicks DB, Guffanti AA, Baldwin K, Krulwich TA (2004) Replacement of amino acid sequence features of a- and c-subunits of ATP synthases of alkaliphilic Bacillus with the Bacillus consensus sequence results in defective oxidative phosphorylation and non-fermentative growth at pH 10.5. J Biol Chem 279:26546–26554

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Han H, Xue Y, Qian Z, Meng B, Peng F, Wnag Z, Tong W, Zha C, Wang Q, Guo Y, Li G, Liu S, Ma Y (2009) Exploring membrane and cytoplasm proteomic response of Alkalimonas amylolytica N10 to different external pHs with combination strategy of de novo peptide sequencing. Proteomics 9:1254–1273

    Article  PubMed  CAS  Google Scholar 

  • Watmough NJ, Frerman FE (2010) The electron transfer flavoprotein: ubiquinone oxidoreductases. Biochim Biophys Acta 1797:1910–1916

    Article  PubMed  CAS  Google Scholar 

  • Watt IN, Montgomery MG, runswick MJ, Leslie AG, Walker JE (2010) Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc Natl Acad Sci USA 107:16823–16827

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Guffanti AA, Krulwich TA (1999) Sequence analysis and functional studies of a chromosomal region of alkaliphilic Bacillus firmus OF4 encoding an ABC-type transporter with similarity of sequence and Na+ exclusion capacity to the Bacillus subtilis NatAB transporter. Extremophiles 3:113–120

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Liu J, Ma Y, Krulwich TA (2007) Three putative cation/proton antiporters from the soda lake alkaliphile Alkalimonas amylolytica N10 complement an alkali-sensitive Escherichia coli mutant. Microbiology 153:2168–2179

    Article  PubMed  CAS  Google Scholar 

  • Wiegel J (1998) Anaerobic alkalithermophiles, a novel group of extremophiles. Extremophiles 2:257–267

    Article  PubMed  CAS  Google Scholar 

  • Wiegel J, Kevbrin VV (2004) Alkalithermophiles. Biochem Soc Trans 32:193–198

    Article  PubMed  CAS  Google Scholar 

  • Wiegert T, Homuth G, Versteeg S, Schumann W (2001) Alkaline shock induces the Bacillus subtilis sW regulon. Mol Microbiol 41:59–71

    Article  PubMed  CAS  Google Scholar 

  • Williams RJ (1978) The multifarious couplings of energy transduction Biochim. Biophys Acta 505:1–44

    Article  CAS  Google Scholar 

  • Ye Q, Roh Y, Carroll SL, Blair B, Zhou J, Zhang CL, Fields MW (2004) Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Appl Environ Microbiol 70:5595–5602

    Article  PubMed  CAS  Google Scholar 

  • Yumoto I (2007) Environmental and taxonomic biodiversities of Gram-positive alkaliphiles. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 295–310

    Google Scholar 

  • Yumoto I, Yamazaki K, Hishinuma M, Nodasaka Y, Inoue N, Kawasaki K (2000) Identification of facultatively alkaliphilic Bacillus sp. strain YN-2000 and its fatty acid composition and cell-surface aspects depending on culture pH. Extremophiles 4:285–290

    Article  PubMed  CAS  Google Scholar 

  • Yumoto I, Nakamura A, Iwata H, Kojima K, Kusumoto K, Nodasaka Y, Matsuyama H (2002) Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol 52:85–90

    PubMed  CAS  Google Scholar 

  • Yumoto I, Hirota K, Nodasaka Y, Yokota Y, Hoshino T, Nakajima N (2004) Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 54:2379–2383

    Article  PubMed  CAS  Google Scholar 

  • Zavarzin GA (1993) Epicontinental soda lakes are probable relict biotopes of terrestrial biota formation. Microbiology 62:473–479

    Google Scholar 

  • Zhang H-M, Li Z, Tsudome M, Ito S, Takami H, Horikoshi K (2005) An alkali-inducible flotillin-like protein from Bacillus halodurans C125. Protein J 24:125–131

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Mesbah NM, Dalin E, Goodwin LA, Nolan M, Pitluck S, Cherkov O, Brettin TS, Han J, Larimer FW, Land ML, Hauser LJ, Kyrpides N, Wiegel J (2011) Complete genome sequence of the anaerobic, halophilic alkalithermophile Natranaerobius thermophilus JW/NM-WN-LF. J Bacteriol 193:4023–4024

    Article  PubMed  CAS  Google Scholar 

  • Zhilina TN, Zavarzin GA, Rainey FA, Pikuta EN, Osipov GA, Kostrikina NA (1997) Desulfonatronovibrio hydrogenovorans gen. mov., sp. nov., an alkaliphilic sulfate-reducing bacterium. Int J Syst Bacteriol 47:144–149

    Article  PubMed  CAS  Google Scholar 

  • Zhilina TN, Appel R, Probian C, Brossa EL, Harder J, Widdel F, Zavarzin GA (2004) Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake. Arch Microbiol 182:244–253

    Article  PubMed  CAS  Google Scholar 

  • Zhilina TN, Kevrin W, Turova TP, Lysenko AM, Kostrikina NA, Zavarzin GA (2005) Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region. Mikrobiologia 74:642–653

    CAS  Google Scholar 

  • Zilberstein D, Schuldiner S, Padan E (1979) Proton electrochemical gradient in Escherichia coli cells and its relation to active transport of lactose. Biochemistry 18:669–673

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work from the authors’ laboratories was supported by research grants GM28454 from the National Institutes of Health (to T.A.K.) and by The Strategic Research Foundation Grant-Aided Project for Private Universities and Grant-in-Aid for Scientific Research (B) No. 21370074 of the Ministry of Education, Culture, Sports, Science and Technology of Japan (to M.I.). We thank Benjamin Janto for providing Fig 20.1 , Shun Fujinami for Fig 20.8 , and David Hicks for Fig 20.10 . We are also grateful to many colleagues in our own laboratories and collaborators from other institutions who have contributed to our work and shared ideas, questions, and new findings on alkaliphiles with us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry Ann Krulwich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Krulwich, T.A., Ito, M. (2013). Alkaliphilic Prokaryotes. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30123-0_58

Download citation

Publish with us

Policies and ethics