Skip to main content

The Inflammatory Component of Neurodegenerative Diseases

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology
  • 790 Accesses

Abstract:

Inflammation is a key component in the immunological defense of the organism against health-threatening pathogens. On the other hand, a dysregulated inflammatory response can lead to tissue damage and disease. In the central nervous system (CNS), the inflammatory response obeys different rules than the periphery. The presence of a selective blood–brain barrier, the lack of dendritic cells, the chronic downregulation of costimulatory molecules, and a bias towards an immunosuppressive environment are mainly responsible for the characteristic features of the inflammatory response in the CNS. Until recently, with the exception of multiple sclerosis, the inflammatory component present in major chronic neurodegenerative diseases has been regarded as a logical consequence of cell death with no major functional relevance but to remove cellular debris. However, inflammation is now known to have toxic and protective effects in chronic neurodegenerative diseases such as Parkinson's, Alzheimer's, and prion diseases. Microglial activation appears as a common feature to all these pathologies. However, microglial cells do not seem to be activated to an end-stage, proinflammatory phenotype during chronic neurodegeneration. Instead, they appear to be in a “primed” state where major proinflammatory cytokine production is tightly controlled. These observations are in agreement with the noninflammatory nature of apoptotic cell death. In addition, evidence is accumulating to favour the hypothesis that these “primed” microglial cells will produce an exacerbated amount of proinflammatory cytokines if a proinflammatory stimulus hits them in this state. The resulting exacerbated inflammatory response can lead to a toxic effect on the degenerating cells, exacerbating disease and aggravating symptoms.

These observations are seminal to understand the pathophysiology of neurodegenerative diseases and prevent putative disease exacerbation by inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APP:

amyloid precursor protein

CJD:

Creutzfeld-Jacob diseases

CNS:

central nervous system

GSS:

Gertsmann-Straussler-Scheinker syndrome

IFN-γ:

interferon-γ

IL-1α:

interleukin 1α

IL-1β:

interleukin 1β

IL-4:

interleukin-4

IL-6:

interleukin-6

IL-8:

interleukin-8

IL-10:

interleukin-10

LPS:

bacterial lipopolysaccharide

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

PS1:

presenilin 1

PS2:

presenilin 2

6-OHDA:

6-hydroxydopamine

SN:

substantia nigra

TNFα:

tumor necrosis factor-α

TSEs:

transmissible spongiform encephalopathies

References

  • Abid K, Soto C. 2006. The intriguing prion disorders. Cell Mol Life Sci 63(19–20): 2342–2351.

    Article  CAS  PubMed  Google Scholar 

  • Aguzzi A. 2003. Prions and the immune system: A journey through gut, spleen, and nerves. Adv Immunol 81: 123–171.

    Article  CAS  PubMed  Google Scholar 

  • Aguzzi A, Heikenwalder M. 2006. Pathogenesis of prion diseases: Current status and future outlook. Nat Rev Microbiol 4(10): 765–775.

    Article  CAS  PubMed  Google Scholar 

  • Ajmone-Cat MA, Nicolini A, Minghetti L. 2003. Prolonged exposure of microglia to lipopolysaccharide modifies the intracellular signaling pathways and selectively promotes prostaglandin E2 synthesis. J Neurochem 87(5): 1193–1203.

    Article  CAS  PubMed  Google Scholar 

  • Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, et al. 2000. Inflammation and Alzheimer's disease. Neurobiol Aging 21(3): 383–421.

    Article  CAS  PubMed  Google Scholar 

  • Aloisi F. 2001. Immune function of microglia. Glia 36(2): 165–179.

    Article  CAS  PubMed  Google Scholar 

  • Arimoto T, Bing G. 2003. Up-regulation of inducible nitric oxide synthase in the substantia nigra by lipopolysaccharide causes microglial activation and neurodegeneration. Neurobiol Dis 12(1): 35–45.

    Article  CAS  PubMed  Google Scholar 

  • Aucouturier P, Geissmann F, Damotte D, Saborio GP, Meeker HC, et al. 2001. Infected splenic dendritic cells are sufficient for prion transmission to the CNS in mouse scrapie. J Clin Invest 108(5): 703–708.

    CAS  PubMed  Google Scholar 

  • Baker CA, Martin D, Manuelidis L. 2002. Microglia from Creutzfeldt-Jakob disease-infected brains are infectious and show specific mRNA activation profiles. J Virol 76(21): 10905–10913.

    Article  CAS  PubMed  Google Scholar 

  • Bate C, Reid S, Williams A. 2001. Killing of prion-damaged neurones by microglia. Neuroreport 12(11): 2589–2594.

    Article  CAS  PubMed  Google Scholar 

  • Beyer M, Herlofson K, Arsland D, Larsen J. 2001. Causes of death in a community-based study of Parkinson's disease. Acta Neurol Scand 103: 7–11.

    Article  CAS  PubMed  Google Scholar 

  • Bird TD. 2005. Genetic factors in Alzheimer's disease. N Engl J Med 352(9): 862–864.

    Article  CAS  PubMed  Google Scholar 

  • Blennow K, de Leon MJ, Zetterberg H. 2006. Alzheimer's disease. Lancet 368(9533): 387–403.

    Article  CAS  PubMed  Google Scholar 

  • Boche D, Cunningham C, Docagne F, Scott H, Perry VH. 2006. TGFbeta1 regulates the inflammatory response during chronic neurodegeneration. Neurobiol Dis 22(3): 638–650.

    Article  CAS  PubMed  Google Scholar 

  • Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, et al. 1994. Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson's disease. Neurosci Lett 172(1–2): 151–154.

    Article  CAS  PubMed  Google Scholar 

  • Carvey PM, Chang Q, Lipton JW, Ling Z. 2003. Prenatal exposure to the bacteriotoxin lipopolysaccharide leads to long-term losses of dopamine neurons in offspring: A potential, new model of Parkinson's disease. Front Biosci 8: s826–s837.

    Article  CAS  PubMed  Google Scholar 

  • Castano A, Herrera AJ, Cano J, Machado A. 1998. Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem 70(4): 1584–1592.

    Article  CAS  PubMed  Google Scholar 

  • Castano A, Herrera AJ, Cano J, Machado A. 2002. The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-alpha, IL-1beta and IFN-gamma. J Neurochem 81(1): 150–157.

    Article  CAS  PubMed  Google Scholar 

  • Cicchetti F, Brownell A, Williams K, Chen Y, Livni E, et al. 2002. Neuroinflammation of the nigrostriatal pathway during 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci 15: 991–998.

    Article  CAS  PubMed  Google Scholar 

  • Combrinck MI, Perry VH, Cunningham C. 2002. Peripheral infection evokes exaggerated sickness behaviour in pre-clinical murine prion disease. Neuroscience 112(1): 7–11.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham C, Boche D, Perry VH. 2002. Transforming growth factor beta1, the dominant cytokine in murine prion disease: Influence on inflammatory cytokine synthesis and alteration of vascular extracellular matrix. Neuropathol Appl Neurobiol 28(2): 107–119.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH. 2005. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 25(40): 9275–9284.

    Article  CAS  PubMed  Google Scholar 

  • Czlonkowska A, Kurkowska-Jastrzebska I, Czlonkowski A, Peter D, Stefano GB. 2002. Immune processes in the pathogenesis of Parkinson's disease—a potential role for microglia and nitric oxide. Med Sci Monit 8(8): RA165–RA177.

    CAS  PubMed  Google Scholar 

  • Chen X, Wang L, Zhou Y, Zheng LH, Zhou Z. 2005. “Kiss-and-run” glutamate secretion in cultured and freshly isolated rat hippocampal astrocytes. J Neurosci 25(40): 9236–9243.

    Article  CAS  PubMed  Google Scholar 

  • Cho BP, Song DY, Sugama S, Shin DH, Shimizu Y, et al. 2006. Pathological dynamics of activated microglia following medial forebrain bundle transection. Glia 53(1): 92–102.

    Article  PubMed  Google Scholar 

  • Dantzer R, Kelley KW. 2007. Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun 21(2): 153–160.

    Article  CAS  PubMed  Google Scholar 

  • Dawson TM, Dawson VL. 2003. Molecular pathways of neurodegeneration in Parkinson's disease. Science 302(5646): 819–822.

    Article  CAS  PubMed  Google Scholar 

  • de Almeida CJ, Chiarini LB, da Silva JP, E Silva PM, Martins MA, et al. 2005. The cellular prion protein modulates phagocytosis and inflammatory response. J Leukoc Biol 77(2): 238–246.

    Article  CAS  PubMed  Google Scholar 

  • de Armond SJ, Eng LF, Rubinstein LJ. 1980. The application of glial fibrillary acidic (GFA) protein immunohistochemistry in neurooncology. A progress report. Pathol Res Pract 168(4): 374–394.

    CAS  PubMed  Google Scholar 

  • Depino A, Earl C, Kaczmarczyk E, Ferrari C, Besedovsky H, et al. 2003. Microglial activation with atypical pro-inflammatory cytokine expression in a rat model of Parkinson's disease. Eur J Neurosci 18: 2731–2742.

    Article  PubMed  Google Scholar 

  • Depino A, Ferrari C, Pott Godoy MC, Tarelli R, Pitossi FJ. 2005. Differential effects of interleukin-1beta on neurotoxicity, cytokine induction and glial reaction in specific brain regions. J Neuroimmunol 168(1–2): 96–110.

    Article  CAS  PubMed  Google Scholar 

  • Ebmeier KP, Calder SA, Crawford JR, Stewart L, Besson JA, et al. 1990. Mortality and causes of death in idiopathic Parkinson's disease: Results from the Aberdeen whole population study. Scott Med J 35(6): 173–175.

    CAS  PubMed  Google Scholar 

  • Eikelenboom P, Bate C, van Gool W, Hoozemans J, Rozemuller J, et al. 2002. Neuroinflammation in Alzheimer's disease and prion disease. Glia 40: 232–239.

    Article  CAS  PubMed  Google Scholar 

  • Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, et al. 1998. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 110(4): 890–898.

    Article  Google Scholar 

  • Ferrari CC, Pott Godoy MC, Tarelli R, Chertoff M, Depino AM, et al. 2006. Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiol Dis 24(1): 183–193.

    Article  CAS  PubMed  Google Scholar 

  • Forno LS. 1992. Neuropathologic features of Parkinson's, Huntington's, and Alzheimer's diseases. Ann N Y Acad Sci 648: 6–16.

    Article  CAS  PubMed  Google Scholar 

  • Gray F, Adle-Biassette H, Chretien F, Ereau T, Delisle MB, et al. 1999. [Neuronal apoptosis in human prion diseases]. Bull Acad Natl Med 183(2): 305–20; discussion 320–321.

    CAS  PubMed  Google Scholar 

  • Greenwood J, Walters CE, Pryce G, Kanuga N, Beraud E, et al. 2003. Lovastatin inhibits brain endothelial cell Rho-mediated lymphocyte migration and attenuates experimental autoimmune encephalomyelitis. FASEB J 17(8): 905–907.

    CAS  PubMed  Google Scholar 

  • Hald A, Lotharius J. 2005. Oxidative stress and inflammation in Parkinson's disease: Is there a causal link? Exp Neurol 193(2): 279–290.

    Article  CAS  PubMed  Google Scholar 

  • He Y, Appel S, Le W. 2001. Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res 909(1–2): 187–193.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, et al. 2003. The role of glial reaction and inflammation in Parkinson's disease. Ann N Y Acad Sci 991: 214–228.

    Article  CAS  PubMed  Google Scholar 

  • Holmes C, El-Okl M, Williams AL, Cunningham C, Wilcockson D, et al. 2003. Systemic infection, interleukin 1beta, and cognitive decline in Alzheimer's disease. J Neurol Neurosurg Psychiatry 74(6): 788–789.

    Article  CAS  PubMed  Google Scholar 

  • Hsiao K, Baker HF, Crow TJ, Poulter M, Owen F, et al. 1989. Linkage of a prion protein missense variant to Gerstmann-Straussler syndrome. Nature 338(6213): 342–345.

    Article  CAS  PubMed  Google Scholar 

  • Hunot S, Dugas N, Faucheux B, Hartmann A, Tardieu M, et al. 1999. FcepsilonRII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci 19(9): 3440–3447.

    CAS  PubMed  Google Scholar 

  • Iravani MM, Kashefi K, Mander P, Rose S, Jenner P. 2002. Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration. Neuroscience 110(1): 49–58.

    Article  CAS  PubMed  Google Scholar 

  • Isaacs JD, Jackson GS, Altmann DM. 2006. The role of the cellular prion protein in the immune system. Clin Exp Immunol 146(1): 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Johnson RT. 2005. Prion diseases. Lancet Neurol 4(10): 635–642.

    Article  CAS  PubMed  Google Scholar 

  • Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, et al. 2000. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: Role of microglia. J Neurosci 20(16): 6309–6316.

    CAS  PubMed  Google Scholar 

  • Kitazawa M, Oddo S, Yamasaki TR, Green KN, La Ferla FM. 2005. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer's disease. J Neurosci 25(39): 8843–8853.

    Article  CAS  PubMed  Google Scholar 

  • Kreutzberg GW. 1996. Microglia: A sensor for pathological events in the CNS. Trends Neurosci 19(8): 312–318.

    Article  CAS  PubMed  Google Scholar 

  • Lang AE, Lozano AM. 1998a. Parkinson's disease. First of two parts. N Engl J Med 339(15): 1044–1053.

    Article  CAS  Google Scholar 

  • Lang AE, Lozano AM. 1998b. Parkinson's disease. Second of two parts. N Engl J Med 339(16): 1130–1143.

    Article  CAS  Google Scholar 

  • Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, et al. 1999. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46(4): 598–605.

    Article  CAS  PubMed  Google Scholar 

  • Lawson LJ, Perry VH, Dri P, Gordon S. 1990. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39(1): 151–170.

    Article  CAS  PubMed  Google Scholar 

  • Lewicki H, Tishon A, Homann D, Mazarguil H, Laval F, et al. 2003. T cells infiltrate the brain in murine and human transmissible spongiform encephalopathies. J Virol 77(6): 3799–3808.

    Article  CAS  PubMed  Google Scholar 

  • Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, et al. 1999. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5(12): 1403–1409.

    Article  CAS  PubMed  Google Scholar 

  • Ling ZD, Chang Q, Lipton JW, Tong CW, Landers TM, et al. 2004. Combined toxicity of prenatal bacterial endotoxin exposure and postnatal 6-hydroxydopamine in the adult rat midbrain. Neuroscience 124(3): 619–628.

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Du L, Hong JS. 2000a. Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation. J Pharmacol Exp Ther 293(2): 607–617.

    CAS  Google Scholar 

  • Liu B, Jiang JW, Wilson BC, Du L, Yang SN, et al. 2000b. Systemic infusion of naloxone reduces degeneration of rat substantia nigral dopaminergic neurons induced by intranigral injection of lipopolysaccharide. J Pharmacol Exp Ther 295(1): 125–132.

    CAS  Google Scholar 

  • Lu ZY, Baker CA, Manuelidis L. 2004. New molecular markers of early and progressive CJD brain infection. J Cell Biochem 93(4): 644–652.

    Article  CAS  PubMed  Google Scholar 

  • Lucking CB, Durr A, Bonifati V, Vaughan J, De Michele G, et al. 2000. Association between early-onset Parkinson's disease and mutations in the parkin gene. French Parkinson's Disease Genetics Study Group. N Engl J Med 342(21): 1560–1567.

    Article  CAS  PubMed  Google Scholar 

  • Lusky M, Christ M, Rittner K, Dieterle A, Dreyer D, et al. 1998. In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted. J Virol 72(3): 2022–2032.

    CAS  PubMed  Google Scholar 

  • Maier SF, Goehler LE, Fleshner M, Watkins LR. 1998. The role of the vagus nerve in cytokine-to-brain communication. Ann N Y Acad Sci 840: 289–300.

    Article  CAS  PubMed  Google Scholar 

  • Manuelidis L, Fritch W, Xi YG. 1997. Evolution of a strain of CJD that induces BSE-like plaques. Science 277(5322): 94–98.

    Article  CAS  PubMed  Google Scholar 

  • Manuelidis L, Zaitsev I, Koni P, Lu ZY, Flavell RA, et al. 2000. Follicular dendritic cells and dissemination of Creutzfeldt-Jakob disease. J Virol 74(18): 8614–8622.

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, Itagaki S, Akiyama H, McGeer EG. 1988. Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol 24(4): 574–576.

    Article  CAS  PubMed  Google Scholar 

  • Mirza B, Hadberg H, Thomsen P, Moos T. 2000. The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson's disease. Neuroscience 95(2): 425–432.

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, et al. 1994. Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett 180(2): 147–150.

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Nagatsu T. 1999. Neurotrophins and cytokines in Parkinson's disease. Adv Neurol 80: 135–139.

    CAS  PubMed  Google Scholar 

  • Nagatsu T, Sawada M. 2005. Inflammatory process in Parkinson's disease: Role for cytokines. Curr Pharm Des 11(8): 999–1016.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Maeda M, Tabata M, Adachi Y, Kusumi M, et al. 1997. Prognosis of Parkinson's disease in Japan. Tottori University Parkinson's Disease Epidemiology (TUPDE) Study Group. Eur Neurol 38 (Suppl 2): 60–63.

    Article  PubMed  Google Scholar 

  • Orr CF, Rowe DB, Halliday GM. 2002. An inflammatory review of Parkinson's disease. Prog Neurobiol 68(5): 325–340.

    Article  CAS  PubMed  Google Scholar 

  • Palin K, Verrier D, Tridon V, Hurst J, Perry VH, et al. 2004. Influence of the course of brain inflammation on the endogenous IL-1beta/IL-1Ra balance in the model of brain delayed-type hypersensitivity response to bacillus Calmette-Guerin in Lewis rats. J Neuroimmunol 149(1–2): 22–30.

    Article  CAS  PubMed  Google Scholar 

  • Perry V, Cunningham C, Boche D. 2002. Atypical inflammation in the central nervous system in prion disease. Current opinion in neurology 15: 349–354.

    Article  PubMed  Google Scholar 

  • Perry VH. 2004. The influence of systemic inflammation on inflammation in the brain: Implications for chronic neurodegenerative disease. Brain Behav Immun 18(5): 407–413.

    Article  CAS  PubMed  Google Scholar 

  • Perry VH, Andersson PB, Gordon S. 1993. Macrophages and inflammation in the central nervous system. Trends Neurosci 16(7): 268–273.

    Article  CAS  PubMed  Google Scholar 

  • Perry VH, Bell MD, Brown HC, Matyszak MK. 1995. Inflammation in the nervous system. Curr Opin Neurobiol 5(5): 636–641.

    Article  CAS  PubMed  Google Scholar 

  • Perry VH, Cunningham C, Holmes C. 2007. Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 7(2): 161–167.

    Article  CAS  PubMed  Google Scholar 

  • Perry VH, Gordon S. 1988. Macrophages and microglia in the nervous system. Trends Neurosci 11(6): 273–277.

    Article  CAS  PubMed  Google Scholar 

  • Perry VH, Newman TA, Cunningham C. 2003. The impact of systemic infection on the progression of neurodegenerative disease. Nat Rev Neurosci 4(2): 103–112.

    Article  CAS  PubMed  Google Scholar 

  • Peyrin JM, Lasmezas CI, Haik S, Tagliavini F, Salmona M, et al. 1999. Microglial cells respond to amyloidogenic PrP peptide by the production of inflammatory cytokines. Neuroreport 10(4): 723–729.

    Article  CAS  PubMed  Google Scholar 

  • Pitossi F, del Rey A, Kabiersch A, Besedovsky H. 1997. Induction of cytokine transcripts in the central nervous system and pituitary following peripheral administration of endotoxin to mice. J Neurosci Res 48(4): 287–298.

    Article  CAS  PubMed  Google Scholar 

  • Pratico D, Delanty N. 2000. Oxidative injury in diseases of the central nervous system: Focus on Alzheimer's disease. Am J Med 109(7): 577–585.

    Article  CAS  PubMed  Google Scholar 

  • Prusiner SB. 1982. Novel proteinaceous infectious particles cause scrapie. Science 216(4542): 136–144.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues RW, Gomide VC, Chadi G. 2001. Astroglial and microglial reaction after a partial nigrostriatal degeneration induced by the striatal injection of different doses of 6-hydroxydopamine. Int J Neurosci 109(1–2): 91–126.

    Article  CAS  PubMed  Google Scholar 

  • Russelakis-Carneiro M, Betmouni S, Perry VH. 1999. Inflammatory response and retinal ganglion cell degeneration following intraocular injection of ME7. Neuropathol Appl Neurobiol 25(3): 196–206.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Pernaute R, Ferree A, Cooper O, Yu M, Brownell AL, et al. 2004. Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson's disease. J Neuroinflammation 1(1): 6.

    Article  PubMed  Google Scholar 

  • Sauer H, Oertel WH. 1994. Progressive degeneration of nigrostrital dopamine neurons following intrastriatal terminal lesions with 6-OH dopamine: A combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 59(2): 401–415.

    Article  CAS  PubMed  Google Scholar 

  • Saura J, Pares M, Bove J, Pezzi S, Alberch J, et al. 2003. Intranigral infusion of interleukin-1beta activates astrocytes and protects from subsequent 6-hydroxydopamine neurotoxicity. J Neurochem 85(3): 651–661.

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ. 1991. The molecular pathology of Alzheimer's disease. Neuron 6(4): 487–498.

    Article  CAS  PubMed  Google Scholar 

  • Sheng JG, Shirabe S, Nishiyama N, Schwartz JP. 1993. Alterations in striatal glial fibrillary acidic protein expression in response to 6-hydroxydopamine-induced denervation. Exp Brain Res 95(3): 450–456.

    Article  CAS  PubMed  Google Scholar 

  • Sly LM, Krzesicki RF, Brashler JR, Buhl AE, McKinley DD, et al. 2001. Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer's disease. Brain Res Bull 56(6): 581–588.

    Article  CAS  PubMed  Google Scholar 

  • Sugama S, Cho BP, Degiorgio LA, Shimizu Y, Kim SS, et al. 2003. Temporal and sequential analysis of microglia in the substantia nigra following medial forebrain bundle axotomy in rat. Neuroscience 116(4): 925–933.

    Article  CAS  PubMed  Google Scholar 

  • Taguchi K, Yamagata HD, Zhong W, Kamino K, Akatsu H, et al. 2005. Identification of hippocampus-related candidate genes for Alzheimer's disease. Ann Neurol 57(4): 585–588.

    Article  CAS  PubMed  Google Scholar 

  • Thackray AM, McKenzie AN, Klein MA, Lauder A, Bujdoso R. 2004. Accelerated prion disease in the absence of interleukin-10. J Virol 78(24): 13697–13707.

    Article  CAS  PubMed  Google Scholar 

  • Unterberger U, Voigtlander T, Budka H. 2005. Pathogenesis of prion diseases. Acta Neuropathol (Berl) 109(1): 32–48.

    Article  CAS  Google Scholar 

  • Van Everbroeck B, Dewulf E, Pals P, Lubke U, Martin JJ, et al. 2002. The role of cytokines, astrocytes, microglia and apoptosis in Creutzfeldt–Jakob disease. Neurobiol Aging 23(1): 59–64.

    Article  CAS  PubMed  Google Scholar 

  • Veerhuis R, Boshuizen RS, Familian A. 2005. Amyloid associated proteins in Alzheimer's and prion disease. Curr Drug Targets CNS Neurol Disord 4(3): 235–248.

    Article  CAS  PubMed  Google Scholar 

  • Vidal M, Legrain P. 1999. Yeast forward and reverse ‘n’-hybrid systems. Nucleic Acids Res 27(4): 919–929.

    Article  CAS  PubMed  Google Scholar 

  • Vila M, Jackson-Lewis V, Guegan C, Wu DC, Teismann P, et al. 2001. The role of glial cells in Parkinson's disease. Curr Opin Neurol 14(4): 483–489.

    Article  CAS  PubMed  Google Scholar 

  • Williams AE, Lawson LJ, Perry VH, Fraser H. 1994. Characterization of the microglial response in murine scrapie. Neuropathol Appl Neurobiol 20(1): 47–55.

    Article  CAS  PubMed  Google Scholar 

  • Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, et al. 2002. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22(5): 1763–1771.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this entry

Cite this entry

Ferrari, C.C., Pitossi, F.J. (2008). The Inflammatory Component of Neurodegenerative Diseases. In: Lajtha, A., Galoyan, A., Besedovsky, H.O. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30398-7_18

Download citation

Publish with us

Policies and ethics