Skip to main content

Advertisement

Log in

Pathogenesis of prion diseases

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Prion diseases are rare neurological disorders that may be of genetic or infectious origin, but most frequently occur sporadically in humans. Their outcome is invariably fatal. As the responsible pathogen, prions have been implicated. Prions are considered to be infectious particles that represent mainly, if not solely, an abnormal, protease-resistant isoform of a cellular protein, the prion protein or PrPC. As in other neurodegenerative diseases, aggregates of misfolded protein conformers are deposited in the CNS of affected individuals. Pathogenesis of prion diseases comprises mainly two equally important, albeit essentially distinct, topics: first, the mode, spread, and amplification of infectivity in acquired disease, designated as peripheral pathogenesis. In this field, significant advances have implicated an essential role of lymphoid tissues for peripheral prion replication, before a likely neural spread to the CNS. The second is the central pathogenesis, dealing, in addition to spread and replication of prions within the CNS, with the mechanisms of nerve cell damage and death. Although important roles for microglial neurotoxicity, oxidative stress, and complement activation have been identified, we are far from complete understanding, and therapeutic applications in prion diseases still need to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 A–F
Fig. 2

Similar content being viewed by others

References

  1. Adler S, Baker PJ, Johnson RJ, Ochi RF, Pritzl P, Couser WG (1986) Complement membrane attack complex stimulates production of reactive oxygen metabolites by cultured rat mesangial cells. J Clin Invest 77:762–767

    CAS  PubMed  Google Scholar 

  2. Almer G, Hainfellner JA, Brücke T, Jellinger K, Kleinert R, Bayer G, Windl O, Kretzschmar HA, Hill A, Sidle K, Collinge J, Budka H (1999) Fatal familial insomnia: a new Austrian family. Brain 122:5–16

    Article  PubMed  Google Scholar 

  3. Arendt T, Bigl V, Arendt A (1984) Neurone loss in the nucleus basalis of Meynert in Creutzfeldt-Jakob disease. Acta Neuropathol 65:85–88

    CAS  PubMed  Google Scholar 

  4. Asahi M, Fujii J, Suzuki K, Seo HG, Kuzuya T, Hori M, Tada M, Fujii S, Taniguchi N (1995) Inactivation of glutathione peroxidase by nitric oxide. Implication for cytotoxicity. J Biol Chem 270:21035–21039

    Article  CAS  PubMed  Google Scholar 

  5. Aucouturier P, Geissmann F, Damotte D, Saborio GP, Meeker HC, Kascsak R, Kascsak R, Carp RI, Wisniewski T (2001) Infected splenic dendritic cells are sufficient for prion transmission to the CNS in mouse scrapie. J Clin Invest 108:703–708

    Article  CAS  PubMed  Google Scholar 

  6. Baldauf E, Beekes M, Diringer H (1997) Evidence for an alternative direct route of access for the scrapie agent to the brain bypassing the spinal cord. J Gen Virol 78:1187–1197

    CAS  PubMed  Google Scholar 

  7. Bate C, Reid S, Williams A (2001) Killing of prion-damaged neurones by microglia. Neuroreport 12:2589–2594

    Article  CAS  PubMed  Google Scholar 

  8. Beekes M, McBride PA, Baldauf E (1998) Cerebral targeting indicates vagal spread of infection in hamsters fed with scrapie. J Gen Virol 79:601–607

    CAS  PubMed  Google Scholar 

  9. Belichenko PV, Miklossy J, Belser B, Budka H, Celio MR (1999) Early destruction of the extracellular matrix around parvalbumin-immunoreactive interneurons in Creutzfeldt-Jakob disease. Neurobiol Dis 6:269–279

    Article  CAS  PubMed  Google Scholar 

  10. Blättler T, Brandner S, Raeber AJ, Klein MA, Voigtländer T, Weissmann C, Aguzzi A (1997) PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature 389:69–73

    Article  PubMed  Google Scholar 

  11. Brandner S, Isenmann S, Raeber A, Fischer M, Sailer A, Kobayashi Y, Marino S, Weissmann C, Aguzzi A (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379:339–343

    Article  CAS  PubMed  Google Scholar 

  12. Brown AR, Webb J, Rebus S, Walker R, Williams A, Fazakerley JK (2003) Inducible cytokine gene expression in the brain in the ME7/CV mouse model of scrapie is highly restricted, is at a strikingly low level relative to the degree of gliosis and occurs only late in the disease. J Gen Virol 84:2605–2611

    Article  CAS  PubMed  Google Scholar 

  13. Brown DR (1998) Prion protein-overexpressing cells show altered response to a neurotoxic prion protein peptide. J Neurosci Res 54:331–340

    CAS  PubMed  Google Scholar 

  14. Brown DR (1999) Prion protein peptide neurotoxicity can be mediated by astrocytes. J Neurochem 73:1105–1113

    Article  CAS  PubMed  Google Scholar 

  15. Brown DR (2000) PrPSc-like prion protein peptide inhibits the function of cellular prion protein. Biochem J 352:511–518

    Article  CAS  PubMed  Google Scholar 

  16. Brown DR, Besinger A (1998) Prion protein expression and superoxide dismutase activity. Biochem J 334:423–429

    CAS  PubMed  Google Scholar 

  17. Brown DR, Sassoon J (2002) Copper-dependent functions for the prion protein. Mol Biotechnol 22:165–178

    Google Scholar 

  18. Brown DR, Herms J, Kretzschmar HA (1994) Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport 5:2057–2060

    CAS  PubMed  Google Scholar 

  19. Brown DR, Schmidt B, Kretzschmar HA (1996) Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 380:345–347

    Article  CAS  PubMed  Google Scholar 

  20. Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, von Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H (1997) The cellular prion protein binds copper in vivo. Nature 390:684–687

    Article  CAS  PubMed  Google Scholar 

  21. Brown DR, Schmidt B, Kretzschmar HA (1997) Effects of oxidative stress on prion protein expression in PC12 cells. Int J Dev Neurosci 15:961–972

    Article  CAS  PubMed  Google Scholar 

  22. Brown DR, Schulz-Schaeffer WJ, Schmidt B, Kretzschmar HA (1997) Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol 146:104–112

    Article  CAS  PubMed  Google Scholar 

  23. Brown DR, Wong BS, Hafiz F, Clive C, Haswell SJ, Jones IM (1999) Normal prion protein has an activity like that of superoxide dismutase. Biochem J 344:1–5

    Article  CAS  PubMed  Google Scholar 

  24. Brown DR, Clive C, Haswell SJ (2001) Antioxidant activity related to copper binding of native prion protein. J Neurochem 76:69–76

    Article  CAS  PubMed  Google Scholar 

  25. Brown DR, Nicholas RSJ, Canevari L (2002) Lack of prion protein expression results in a neuronal phenotype sensitive to stress. J Neurosci Res 67:211–224

    Google Scholar 

  26. Brown KL, Stewart K, Ritchie DL, Mabbott NA, Williams A, Fraser H, Morrison WI, Bruce ME (1999) Scrapie replication in lymphoid tissues depends on prion protein-expressing follicular dendritic cells. Nat Med 5:1308–1312

    Google Scholar 

  27. Bruce ME (2003) TSE strain variation. Br Med Bull 66:99–108

    Article  CAS  PubMed  Google Scholar 

  28. Budka H (2000) Histopathology and immunohistochemistry of human transmissible spongiform encephalopathies (TSEs). Arch Virol [Suppl] 16:135–142

    Google Scholar 

  29. Budka H (2003) Neuropathology of prion diseases. Br Med Bull 66:121–130

    Article  CAS  PubMed  Google Scholar 

  30. Büeler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, Prusiner SB, Aguet M, Weissmann C (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356:577–582

    Article  PubMed  Google Scholar 

  31. Büeler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73:1339–1347

    Article  CAS  PubMed  Google Scholar 

  32. Büeler H, Raeber A, Sailer A, Fischer M, Aguzzi A, Weissmann C (1994) High prion and PrPSc levels but delayed onset of disease in scrapie-inoculated mice heterozygous for a disrupted PrP gene. Mol Med 1:19–30

    PubMed  Google Scholar 

  33. Bürkle A, Kretzschmar HA, Brown DR (1999) Poly(ADP-ribose) immunostaining to detect apoptosis induced by a neurotoxic fragment of prion protein. Histochem J 31:711–716

    Article  PubMed  Google Scholar 

  34. Cartier L, Verdugo R, Vergara C, Galvez S (1989) The nucleus basalis of Meynert in 20 definite cases of Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 52:304–309

    CAS  PubMed  Google Scholar 

  35. Choi SI, Ju WK, Choi EK, Kim J, Lea HZ, Carp RI, Wisniewski HM, Kim YS (1998) Mitochondrial dysfunction induced by oxidative stress in the brains of hamsters infected with the 263 K scrapie agent. Acta Neuropathol 96:279–286

    Article  CAS  PubMed  Google Scholar 

  36. Ciesielski-Treska J, Grant NJ, Ulrich G, Corrotte M, Bailly Y, Haeberle AM, Chasserot-Golaz S, Bader MF (2004) Fibrillar prion peptide (106–126) and scrapie prion protein hamper phagocytosis in microglia. Glia 46:101–115

    Article  PubMed  Google Scholar 

  37. Clarke MC, Kimberlin RH (1984) Pathogenesis of mouse scrapie: distribution of agent in the pulp and stroma of infected spleens. Vet Microbiol 9:215–225

    Article  CAS  PubMed  Google Scholar 

  38. Cohen GM, Sun XM, Snowden RT, Dinsdale D, Skilleter DN (1992) Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem J 286:331–334

    CAS  PubMed  Google Scholar 

  39. Cole S, Kimberlin RH (1985) Pathogenesis of mouse scrapie: dynamics of vacuolation in brain and spinal cord after intraperitoneal infection. Neuropathol Appl Neurobiol 11:213–227

    CAS  PubMed  Google Scholar 

  40. Collard CD, Väkevä A, Morrissey MA, Agah A, Rollins SA, Reenstra WR, Buras JA, Meri S, Stahl GL (2000) Complement activation after oxidative stress. Role of the lectin complement pathway. Am J Pathol 156:1549–1556

    CAS  PubMed  Google Scholar 

  41. Collinge J, Whittington MA, Sidle KCL, Smith CJ, Palmer MS, Clarke AR, Jefferys JGR (1994) Prion protein is necessary for normal synaptic function. Nature 370:295–297

    Article  CAS  PubMed  Google Scholar 

  42. Collins MK, Marvel J, Malde P, Lopez-Rivas A (1992) Interleukin 3 protects murine bone marrow cells from apoptosis induced by DNA damaging agents. J Exp Med 176:1043–1051

    Article  CAS  PubMed  Google Scholar 

  43. Corsaro A, Thellung S, Villa V, Principe DR, Paludi D, Arena S, Millo E, Schettini D, Damonte G, Aceto A, Schettini G, Florio T (2003) Prion protein fragment 106–126 induces a p38 MAP kinase-dependent apoptosis in SH-SY5Y neuroblastoma cells independently from the amyloid fibril formation. Ann N Y Acad Sci 1010:610–622

    Google Scholar 

  44. Cunningham C, Boche D, Perry VH (2002) Transforming growth factor β1, the dominant cytokine in murine prion disease: influence on inflammatory cytokine synthesis and alteration of vascular extracellular matrix. Neuropathol Appl Neurobiol 28:107–119

    Article  CAS  PubMed  Google Scholar 

  45. Cunningham C, Deacon R, Wells H, Boche D, Waters S, Picanco Diniz C, Scott H, Rawlins JNP, Perry VH (2003) Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease. Eur J Neurosci 17:2147–2155

    Google Scholar 

  46. Dorandeu A, Wingertsmann L, Chrétien F, Delisle MB, Vital C, Parchi P, Montagna P, Lugaresi E, Ironside JW, Budka H, Gambetti P, Gray F (1998) Neuronal apoptosis in fatal familial insomnia. Brain Pathol 8:531–537

    CAS  PubMed  Google Scholar 

  47. Elsner J, Oppermann M, Czech W, Dobos G, Schöpf E, Norgauer J, Kapp A (1994) C3a activates reactive oxygen radical species production and intracellular calcium transients in human eosinophils. Eur J Immunol 24:518–522

    Google Scholar 

  48. Endres R, Alimzhanov MB, Plitz T, Futterer A, Kosco-Vilbois MH, Nedospasov SA, Rajewsky K, Pfeffer K (1999) Mature follicular dendritic cell networks depend on expression of lymphotoxin beta receptor by radioresistant stromal cells and of lymphotoxin beta and tumor necrosis factor by B cells. J Exp Med 189:159–168

    Article  CAS  PubMed  Google Scholar 

  49. Falcieri E, Martelli AM, Bareggi R, Cataldi A, Cocco L (1993) The protein kinase inhibitor staurosporine induces morphological changes typical of apoptosis in MOLT-4 cells without concomitant DNA fragmentation. Biochem Biophys Res Commun 193:19–25

    Article  CAS  PubMed  Google Scholar 

  50. Ferrer I (1999) Nuclear DNA fragmentation in Creutzfeldt-Jakob disease: does a mere positive in situ nuclear end-labeling indicate apoptosis? Acta Neuropathol 97:5–12

    Article  CAS  PubMed  Google Scholar 

  51. Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F (1993) Neurotoxicity of a prion protein fragment. Nature 362:543–546

    Article  CAS  PubMed  Google Scholar 

  52. Fukuda K, Kojiro M, Chiu JF (1993) Demonstration of extensive chromatin cleavage in transplanted Morris hepatoma 7777 tissue: apoptosis or necrosis? Am J Pathol 142:935–946

    CAS  PubMed  Google Scholar 

  53. Gasque P, Dean YD, McGreal EP, VanBeek J, Morgan BP (2000) Complement components of the innate immune system in health and disease in the CNS. Immunopharmacology 49:171–186

    Google Scholar 

  54. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  CAS  PubMed  Google Scholar 

  55. Giese A, Groschup MH, Hess B, Kretzschmar HA (1995) Neuronal cell death in scrapie-infected mice is due to apoptosis. Brain Pathol 5:213–221

    CAS  PubMed  Google Scholar 

  56. Giese A, Brown DR, Groschup MH, Feldmann C, Haist I, Kretzschmar HA (1998) Role of microglia in neuronal cell death in prion disease. Brain Pathol 8:449–457

    CAS  PubMed  Google Scholar 

  57. Giese A, Kretzschmar HA (2001) Prion-induced neuronal damage—the mechanisms of neuronal destruction in the subacute spongiform encephalopathies. Curr Top Microbiol Immunol 253:203–217

    CAS  PubMed  Google Scholar 

  58. Glatzel M, Heppner FL, Albers KM, Aguzzi A (2001) Sympathetic innervation of lymphoreticular organs is rate limiting for prion neuroinvasion. Neuron 31:25–34

    Article  CAS  PubMed  Google Scholar 

  59. Gonzalez M, Mackay F, Browning JL, Kosco-Vilbois MH, Noelle RJ (1998) The sequential role of lymphotoxin and B cells in the development of splenic follicles. J Exp Med 187:997–1007

    Article  CAS  PubMed  Google Scholar 

  60. Gray F, Chretien F, Adle-Biassette H, Dorandeu A, Ereau T, Delisle MB, Kopp N, Ironside JW, Vital C (1999) Neuronal apoptosis in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 58:321–328

    CAS  PubMed  Google Scholar 

  61. Guentchev M, Hainfellner JA, Trabattoni GR, Budka H (1997) Distribution of parvalbumin-immunoreactive neurons in brain correlates with hippocampal and temporal cortical pathology in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 56:1119–1124

    CAS  PubMed  Google Scholar 

  62. Guentchev M, Groschup MH, Kordek R, Liberski PP, Budka H (1998) Severe, early and selective loss of a subpopulation of GABAergic inhibitory neurons in experimental transmissible spongiform encephalopathies. Brain Pathol 8:615–623

    CAS  PubMed  Google Scholar 

  63. Guentchev M, Wanschitz J, Voigtländer T, Flicker H, Budka H (1999) Selective neuronal vulnerability in human prion diseases. Fatal familial insomnia differs from other types of prion diseases. Am J Pathol 155:1453–1457

    CAS  PubMed  Google Scholar 

  64. Guentchev M, Voigtländer T, Haberler C, Groschup MH, Budka H (2000) Evidence for oxidative stress in experimental prion disease. Neurobiol Dis 7:270–273

    Article  CAS  PubMed  Google Scholar 

  65. Guentchev M, Siedlak SL, Jarius C, Tagliavini F, Castellani RJ, Perry G, Smith MA, Budka H (2002) Oxidative damage to nucleic acids in human prion disease. Neurobiol Dis 9:275–281

    Article  CAS  PubMed  Google Scholar 

  66. Hainfellner JA, Budka H (1999) Disease associated prion protein may deposit in the peripheral nervous system in human transmissible spongiform encephalopathies. Acta Neuropathol 98:458–460

    Article  CAS  PubMed  Google Scholar 

  67. Hay B, Barry RA, Lieberburg I, Prusiner SB, Lingappa VR (1987) Biogenesis and transmembrane orientation of the cellular isoform of the scrapie prion protein. Mol Cell Biol 7:914–920

    CAS  PubMed  Google Scholar 

  68. Hay B, Prusiner SB, Lingappa VR (1987) Evidence for a secretory form of the cellular prion protein. Biochemistry 26:8110–8115

    CAS  PubMed  Google Scholar 

  69. Head MW, Ritchie D, Smith N, McLoughlin V, Nailon W, Samad S, Masson S, Bishop M, McCardle L, Ironside JW (2004) Peripheral tissue involvement in sporadic, iatrogenic, and variant Creutzfeldt-Jakob disease: an immunohistochemical, quantitative, and biochemical study. Am J Pathol 164:143–153

    CAS  PubMed  Google Scholar 

  70. Hegde RS, Mastrianni JA, Scott MR, DeFea KA, Tremblay P, Torchia M, DeArmond SJ, Prusiner SB, Lingappa VR (1998) A transmembrane form of the prion protein in neurodegenerative disease. Science 279:827–834

    Article  CAS  PubMed  Google Scholar 

  71. Hegde RS, Tremblay P, Groth D, DeArmond SJ, Prusiner SB, Lingappa VR (1999) Transmissible and genetic prion diseases share a common pathway of neurodegeneration. Nature 402:822–826

    Article  CAS  PubMed  Google Scholar 

  72. Heppner FL, Christ AD, Klein MA, Prinz M, Fried M, Kraehenbuhl JP, Aguzzi A (2001) Transepithelial prion transport by M cells. Nat Med 7:976–977

    Google Scholar 

  73. Hetz C, Russelakis-Carneiro M, Maundrell K, Castilla J, Soto C (2003) Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J 22:5435–5445

    Article  CAS  PubMed  Google Scholar 

  74. Hill AF, Butterworth RJ, Joiner S, Jackson G, Rossor MN, Thomas DJ, Frosh A, Tolley N, Bell JE, Spencer M, King A, Al-Sarraj S, Ironside JW, Lantos PL, Collinge J (1999) Investigation of variant Creutzfeldt-Jakob disease and other human prion diseases with tonsil biopsy samples. Lancet 353:183–189

    Article  CAS  PubMed  Google Scholar 

  75. Hill AF, Joiner S, Wadsworth JDF, Sidle KCL, Bell JE, Budka H, Ironside JW, Collinge J (2003) Molecular classification of sporadic Creutzfeldt-Jakob disease. Brain 126:1333–1346

    Article  PubMed  Google Scholar 

  76. Hornshaw MP, McDermott JR, Candy JM (1995) Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem Biophys Res Commun 207:621–629

    Article  CAS  PubMed  Google Scholar 

  77. Huang FP, Farquhar CF, Mabbott NA, Bruce ME, MacPherson GG (2002) Migrating intestinal dendritic cells transport PrP(Sc) from the gut. J Gen Virol 83:267–271

    CAS  PubMed  Google Scholar 

  78. Ishii T, Haga S, Yagishita S, Tateishi J (1984) The presence of complements in amyloid plaques of Creutzfeldt-Jakob disease and Gerstmann-Straussler-Scheinker disease. Appl Pathol 2:370–379

    CAS  PubMed  Google Scholar 

  79. Jeffrey M, McGovern G, Goodsir CM, Brown KL, Bruce ME (2000) Sites of prion protein accumulation in scrapie-infected mouse spleen revealed by immuno-electron microscopy. J Pathol 191:323–332

    Article  CAS  PubMed  Google Scholar 

  80. Jeffrey M, Goodsir CM, Race RE, Chesebro B (2004) Scrapie-specific neuronal lesions are independent of neuronal PrP expression. Ann Neurol 55:781–792

    Article  CAS  PubMed  Google Scholar 

  81. Jendroska K, Heinzel FP, Torchia M, Stowring L, Kretzschmar HA, Kon A, Stern A, Prusiner SB, DeArmond SJ (1991) Proteinase-resistant prion protein accumulation in Syrian hamster brain correlates with regional pathology and scrapie infectivity. Neurology 41:1482–1490

    CAS  PubMed  Google Scholar 

  82. Kerneis S, Bogdanova A, Kraehenbuhl JP, Pringault E (1997) Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277:949–952

    Article  CAS  PubMed  Google Scholar 

  83. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    CAS  PubMed  Google Scholar 

  84. Kimberlin RH, Hall SM, Walker CA (1983) Pathogenesis of mouse scrapie. Evidence for direct neural spread of infection to the CNS after injection of sciatic nerve. J Neurol Sci 61:315–325

    Article  CAS  PubMed  Google Scholar 

  85. Kitamoto T, Muramoto T, Mohri S, Doh-Ura K, Tateishi J (1991) Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt-Jakob disease. J Virol 65:6292–6295

    CAS  PubMed  Google Scholar 

  86. Klein MA, Frigg R, Flechsig E, Raeber AJ, Kalinke U, Bluethmann H, Bootz F, Suter M, Zinkernagel RM, Aguzzi A (1997) A crucial role for B cells in neuroinvasive scrapie. Nature 390:687–690

    CAS  PubMed  Google Scholar 

  87. Klein MA, Frigg R, Raeber AJ, Flechsig E, Hegyi I, Zinkernagel RM, Weissmann C, Aguzzi A (1998) PrP expression in B lymphocytes is not required for prion neuroinvasion. Nat Med 4:1429–1433

    Google Scholar 

  88. Klein MA, Kaeser PS, Schwarz P, Weyd H, Xenarios I, Zinkernagel RM, Carroll MC, Verbeek JS, Botto M, Walport MJ, Molina H, Kalinke U, Acha-Orbea H, Aguzzi A (2001) Complement facilitates early prion pathogenesis. Nat Med 7:488–492

    Google Scholar 

  89. Koperek O, Kovacs GG, Ritchie D, Ironside JW, Budka H, Wick G (2002) Disease-associated prion protein in vessel walls. Am J Pathol 161:1979–1984

    CAS  PubMed  Google Scholar 

  90. Kordek R, Hainfellner JA, Liberski PP, Budka H (1999) Deposition of the prion protein (PrP) during the evolution of experimental Creutzfeldt-Jakob disease. Acta Neuropathol 98:597–602

    Article  CAS  PubMed  Google Scholar 

  91. Kovacs GG, Voigtländer T, Hainfellner JA, Budka H (2002) Distribution of intraneuronal immunoreactivity for the prion protein in human prion diseases. Acta Neuropathol 104:320–326

    CAS  PubMed  Google Scholar 

  92. Kovacs GG, Zerbi P, Voigtländer T, Strohschneider M, Trabattoni G, Hainfellner JA, Budka H (2002) The prion protein in human neurodegenerative disorders. Neurosci Lett 329:269–272

    Google Scholar 

  93. Kovacs GG, Gasque P, Ströbel T, Lindeck-Pozza E, Strohschneider M, Ironside JW, Budka H, Guentchev M (2004) Complement activation in human prion disease. Neurobiol Dis 15:21–28

    Article  CAS  PubMed  Google Scholar 

  94. Kovacs GG, Preusser M, Strohschneider M, Budka H (2004) Subcellular localization of disease associated prion protein in the human brain. Am J Pathol (in press)

  95. Kretzschmar HA, Prusiner SB, Stowring LE, DeArmond SJ (1986) Scrapie prion proteins are synthesized in neurons. Am J Pathol 122:1–5

    Google Scholar 

  96. Kunzi V, Glatzel M, Nakano MY, Greber UF, Van Leuven F, Aguzzi A (2002) Unhampered prion neuroinvasion despite impaired fast axonal transport in transgenic mice overexpressing four-repeat tau. J Neurosci 22:7471–7477

    Google Scholar 

  97. Lee DW, Sohn HO, Lim HB, Lee YG, Kim YS, Carp RI, Wisniewski HM (1999) Alteration of free radical metabolism in the brain of mice infected with scrapie agent. Free Radic Res 30:499–507

    CAS  PubMed  Google Scholar 

  98. Legname G, Baskakov IV, Nguyen HOB, Riesner D, Cohen FE, DeArmond SJ, Prusiner SB (2004) Synthetic mammalian prions. Science 305:673–676

    Article  CAS  PubMed  Google Scholar 

  99. Liberski PP, Sikorska B, Bratosiewicz-Wasik J, Gajdusek DC, Brown P (2004) Neuronal cell death in transmissible spongiform encephalopathies (prion diseases) revisited: from apoptosis to autophagy. Int J Biochem Cell Biol 36:2473–2490

    Article  CAS  PubMed  Google Scholar 

  100. Mabbott NA, Williams A, Farquhar CF, Pasparakis M, Kollias G, Bruce ME (2000) Tumor necrosis factor alpha-deficient, but not interleukin-6-deficient, mice resist peripheral infection with scrapie. J Virol 74:3338–3344

    Article  CAS  PubMed  Google Scholar 

  101. Mabbott NA, Bruce ME, Botto M, Walport MJ, Pepys MB (2001) Temporary depletion of complement component C3 or genetic deficiency of C1q significantly delays onset of scrapie. Nat Med 7:485–487

    Google Scholar 

  102. Mallucci GR, Ratté S, Asante EA, Linehan J, Gowland I, Jefferys JGR, Collinge J (2002) Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J 21:202–210

    Article  CAS  PubMed  Google Scholar 

  103. Mallucci G, Dickinson A, Linehan J, Klöhn PC, Brandner S, Collinge J (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302:871–874

    Article  CAS  PubMed  Google Scholar 

  104. Manson JC, Clarke AR, Hooper ML, Aitchison L, McConnell I, Hope J (1994) 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol 8:121–127

    CAS  PubMed  Google Scholar 

  105. Manson JC, Clarke AR, McBride PA, McConnell I, Hope J (1994) PrP gene dosage determines the timing but not the final intensity or distribution of lesions in scrapie pathology. Neurodegeneration 3:331–340

    CAS  PubMed  Google Scholar 

  106. Matsumoto M, Fu YX, Molina H, Huang G, Kim J, Thomas DA, Nahm MH, Chaplin DD (1997) Distinct roles of lymphotoxin alpha and the type I tumor necrosis factor (TNF) receptor in the establishment of follicular dendritic cells from non-bone marrow-derived cells. J Exp Med 186:1997–2004

    Article  CAS  PubMed  Google Scholar 

  107. McBride PA, Beekes M (1999) Pathological PrP is abundant in sympathetic and sensory ganglia of hamsters fed with scrapie. Neurosci Lett 265:135–138

    Google Scholar 

  108. McMahon HEM, Mangé A, Nishida N, Créminon C, Casanova D, Lehmann S (2001) Cleavage of the amino terminus of the prion protein by reactive oxygen species. J Biol Chem 276:2286–2291

    Article  CAS  PubMed  Google Scholar 

  109. Mohri S, Handa S, Tateishi J (1987) Lack of effect of thymus and spleen on the incubation period of Creutzfeldt-Jakob disease in mice. J Gen Virol 68:1187–1189

    PubMed  Google Scholar 

  110. Montrasio F, Frigg R, Glatzel M, Klein MA, Mackay F, Aguzzi A, Weissmann C (2000) Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288:1257–1259

    Article  CAS  PubMed  Google Scholar 

  111. Moore RC, Lee IY, Silverman GL, Harrison PM, Strome R, Heinrich C, Karunaratne A, Pasternak SH, Chishti MA, Liang Y, Mastrangelo P, Wang K, Smit AF, Katamine S, Carlson GA, Cohen FE, Prusiner SB, Melton DW, Tremblay P, Hood LE, Westaway D (1999) Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel. J Mol Biol 292:797–817

    CAS  PubMed  Google Scholar 

  112. O’Donovan CN, Tobin D, Cotter TG (2001) Prion protein fragment PrP-(106–126) induces apoptosis via mitochondrial disruption in human neuronal SH-SY5Y cells. J Biol Chem 276:43516–43523

    Article  PubMed  Google Scholar 

  113. Ookawara T, Kawamura N, Kitagawa Y, Taniguchi N (1992) Site-specific and random fragmentation of Cu,Zn-superoxide dismutase by glycation reaction. Implication of reactive oxygen species. J Biol Chem 267:18505–18510

    CAS  PubMed  Google Scholar 

  114. Parchi P, Giese A, Capellari S, Brown P, Schulz-Schaeffer W, Windl O, Zerr I, Budka H, Kopp N, Piccardo P, Poser S, Rojiani A, Streichemberger N, Julien J, Vital C, Ghetti B, Gambetti P, Kretzschmar H (1999) Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 46:224–233

    Article  CAS  PubMed  Google Scholar 

  115. Pauly PC, Harris DA (1998) Copper stimulates endocytosis of the prion protein. J Biol Chem 273:33107–33110

    Article  CAS  PubMed  Google Scholar 

  116. Perry VH, Cunningham C, Boche D (2002) Atypical inflammation in the central nervous system in prion disease. Curr Opin Neurol 15:349–354

    Article  PubMed  Google Scholar 

  117. Peyrin JM, Lasmézas CI, Haïk S, Tagliavini F, Salmona M, Williams A, Richie D, Deslys JP, Dormont D (1999) Microglial cells respond to amyloidogenic PrP peptide by the production of inflammatory cytokines. Neuroreport 10:723–729

    CAS  PubMed  Google Scholar 

  118. Prinz M, Montrasio F, Klein MA, Schwarz P, Priller J, Odermatt B, Pfeffer K, Aguzzi A (2002) Lymph nodal prion replication and neuroinvasion in mice devoid of follicular dendritic cells. Proc Natl Acad Sci USA 99:919–924

    Google Scholar 

  119. Prinz M, Huber G, Macpherson AJ, Heppner FL, Glatzel M, Eugster HP, Wagner N, Aguzzi A (2003) Oral prion infection requires normal numbers of Peyer’s patches but not of enteric lymphocytes. Am J Pathol 162:1103–1111

    CAS  PubMed  Google Scholar 

  120. Prinz M, Montrasio F, Furukawa H, Haar ME van der, Schwarz P, Rülicke T, Giger OT, Häusler KG, Perez D, Glatzel M, Aguzzi A (2004) Intrinsic resistance of oligodendrocytes to prion infection. J Neurosci 24:5974–5981

    Google Scholar 

  121. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383

    Article  CAS  PubMed  Google Scholar 

  122. Qin K, Yang DS, Yang Y, Chishti MA, Meng LJ, Kretzschmar HA, Yip CM, Fraser PE, Westaway D (2000) Copper(II)-induced conformational changes and protease resistance in recombinant and cellular PrP. Effect of protein age and deamidation. J Biol Chem 275:19121–19131

    Article  CAS  PubMed  Google Scholar 

  123. Quaglio E, Chiesa R, Harris DA (2001) Copper converts the cellular prion protein into a protease-resistant species that is distinct from the scrapie isoform. J Biol Chem 276:11432–11438

    Article  CAS  PubMed  Google Scholar 

  124. Race RE, Priola SA, Bessen RA, Ernst D, Dockter J, Rall GF, Mucke L, Chesebro B, Oldstone MB (1995) Neuron-specific expression of a hamster prion protein minigene in transgenic mice induces susceptibility to hamster scrapie agent. Neuron 15:1183–1191

    Article  CAS  PubMed  Google Scholar 

  125. Rachidi W, Vilette D, Guiraud P, Arlotto M, Riondel J, Laude H, Lehmann S, Favier A (2003) Expression of prion protein increases cellular copper binding and antioxidant enzyme activities but not copper delivery. J Biol Chem 278:9064–9072

    Article  CAS  PubMed  Google Scholar 

  126. Raeber AJ, Race RE, Brandner S, Priola SA, Sailer A, Bessen RA, Mucke L, Manson J, Aguzzi A, Oldstone MBA, Weissmann C, Chesebro B (1997) Astrocyte-specific expression of hamster prion protein (PrP) renders PrP knockout mice susceptible to hamster scrapie. EMBO J 16:6057–6065

    Article  CAS  PubMed  Google Scholar 

  127. Raffray M, Cohen GM (1997) Apoptosis and necrosis in toxicology: a continuum or distinct modes of cell death? Pharmacol Ther 75:153–177

    Article  CAS  PubMed  Google Scholar 

  128. Rossi D, Cozzio A, Flechsig E, Klein MA, Rülicke T, Aguzzi A, Weissmann C (2001) Onset of ataxia and Purkinje cell loss in PrP null mice inversely correlated with Dpl level in brain. EMBO J 20:694–702

    CAS  PubMed  Google Scholar 

  129. Sakaguchi S, Katamine S, Nishida N, Moriuchi R, Shigematsu K, Sugimoto T, Nakatani A, Kataoka Y, Houtani T, Shirabe S, Okada H, Hasegawa S, Miyamoto T, Noda T (1996) Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 380:528–531

    CAS  PubMed  Google Scholar 

  130. Sasaki A, Hirato J, Nakazato Y (1993) Immunohistochemical study of microglia in the Creutzfeldt-Jakob diseased brain. Acta Neuropathol 86:337–344

    Article  CAS  PubMed  Google Scholar 

  131. Sastry PS, Rao KS (2000) Apoptosis and the nervous system. J Neurochem 74:1–20

    Google Scholar 

  132. Schätzl HM, Laszlo L, Holtzman DM, Tatzelt J, DeArmond SJ, Weiner RI, Mobley WC, Prusiner SB (1997) A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J Virol 71:8821–8831

    PubMed  Google Scholar 

  133. Sikorska B, Liberski PP, Giraud P, Kopp N, Brown P (2004) Autophagy is a part of ultrastructural synaptic pathology in Creutzfeldt-Jakob disease: a brain biopsy study. Int J Biochem Cell Biol 36:2563–2573

    Article  CAS  PubMed  Google Scholar 

  134. Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106

    Article  CAS  PubMed  Google Scholar 

  135. Stewart RS, Harris DA (2001) Most pathogenic mutations do not alter the membrane topology of the prion protein. J Biol Chem 276:2212–2220

    Article  CAS  PubMed  Google Scholar 

  136. Stewart RS, Harris DA (2003) Mutational analysis of topological determinants in prion protein (PrP) and measurement of transmembrane and cytosolic PrP during prion infection. J Biol Chem 278:45960–45968

    Article  CAS  PubMed  Google Scholar 

  137. Stewart RS, Drisaldi B, Harris DA (2001) A transmembrane form of the prion protein contains an uncleaved signal peptide and is retained in the endoplasmic reticulum. Mol Biol Cell 12:881–889

    CAS  PubMed  Google Scholar 

  138. Thackray AM, Knight R, Haswell SJ, Bujdoso R, Brown DR (2002) Metal imbalance and compromised antioxidant function are early changes in prion disease. Biochem J 362:253–258

    Article  CAS  PubMed  Google Scholar 

  139. Tobler I, Gaus SE, Deboer T, Achermann P, Fischer M, Rülicke T, Moser M, Oesch B, McBride PA, Manson JC (1996) Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380:639–642

    Article  CAS  PubMed  Google Scholar 

  140. Turnbull S, Tabner BJ, Brown DR, Allsop D (2003) Copper-dependent generation of hydrogen peroxide from the toxic prion protein fragment PrP106–126. Neurosci Lett 336:159–162

    Google Scholar 

  141. Van Keulen LJ, Schreuder BE, Meloen RH, Mooij-Harkes G, Vromans M, Langeveld JP (1996) Immunohistochemical detection of prion protein in lymphoid tissues of sheep with natural scrapie. J Clin Microbiol 34:1228–1231

    PubMed  Google Scholar 

  142. Van Rheede T, Smolenaars MMW, Madsen O, Jong WW de (2003) Molecular evolution of the mammalian prion protein. Mol Biol Evol 20:111–121

    Article  PubMed  Google Scholar 

  143. Vogt W, Damerau B, Zabern I von, Nolte R, Brunahl D (1989) Non-enzymic activation of the fifth component of human complement, by oxygen radicals. Some properties of the activation product, C5b-like C5. Mol Immunol 26:1133–1142

    Google Scholar 

  144. Voigtländer T, Klöppel S, Birner P, Jarius C, Flicker H, Verghese-Nikolakaki S, Sklaviadis T, Guentchev M, Budka H (2001) Marked increase of neuronal prion protein immunoreactivity in Alzheimer’s disease and human prion diseases. Acta Neuropathol 101:417–423

    CAS  Google Scholar 

  145. Wells GA, Dawson M, Hawkins SA, Green RB, Dexter I, Francis ME, Simmons MM, Austin AR, Horigan MW (1994) Infectivity in the ileum of cattle challenged orally with bovine spongiform encephalopathy. Vet Rec 135:40–41

    CAS  PubMed  Google Scholar 

  146. White AR, Collins SJ, Maher F, Jobling MF, Stewart LR, Thyer JM, Beyreuther K, Masters CL, Cappai R (1999) Prion protein-deficient neurons reveal lower glutathione reductase activity and increased susceptibility to hydrogen peroxide toxicity. Am J Pathol 155:1723–1730

    CAS  PubMed  Google Scholar 

  147. White AR, Guirguis R, Brazier MW, Jobling MF, Hill AF, Beyreuther K, Barrow CJ, Masters CL, Collins SJ, Cappai R (2001) Sublethal concentrations of prion peptide PrP106–126 or the amyloid beta peptide of Alzheimer’s disease activates expression of proapoptotic markers in primary cortical neurons. Neurobiol Dis 8:299–316

    Article  CAS  PubMed  Google Scholar 

  148. Williams AE, Lawson LJ, Perry VH, Fraser H (1994) Characterization of the microglial response in murine scrapie. Neuropathol Appl Neurobiol 20:47–55

    CAS  PubMed  Google Scholar 

  149. Williams A, Lucassen PJ, Ritchie D, Bruce M (1997) PrP deposition, microglial activation, and neuronal apoptosis in murine scrapie. Exp Neurol 144:433–438

    Article  CAS  PubMed  Google Scholar 

  150. Williams A, Van Dam AM, Ritchie D, Eikelenboom P, Fraser H (1997) Immunocytochemical appearance of cytokines, prostaglandin E2 and lipocortin-1 in the CNS during the incubation period of murine scrapie correlates with progressive PrP accumulations. Brain Res 754:171–180

    Article  CAS  PubMed  Google Scholar 

  151. Wong BS, Brown DR, Pan T, Whiteman M, Liu T, Bu X, Li R, Gambetti P, Olesik J, Rubenstein R, Sy MS (2001) Oxidative impairment in scrapie-infected mice is associated with brain metals perturbations and altered antioxidant activities. J Neurochem 79:689–698

    Article  CAS  PubMed  Google Scholar 

  152. Wong BS, Chen SG, Colucci M, Xie Z, Pan T, Liu T, Li R, Gambetti P, Sy MS, Brown DR (2001) Aberrant metal binding by prion protein in human prion disease. J Neurochem 78:1400–1408

    Article  CAS  PubMed  Google Scholar 

  153. Zakeri ZF, Quaglino D, Latham T, Lockshin RA (1993) Delayed internucleosomal DNA fragmentation in programmed cell death. FASEB J 7:470–478

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Voigtländer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unterberger, U., Voigtländer, T. & Budka, H. Pathogenesis of prion diseases. Acta Neuropathol 109, 32–48 (2005). https://doi.org/10.1007/s00401-004-0953-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-004-0953-9

Keywords

Navigation