Skip to main content

Novel Therapeutic Challenges in Cerebellar Diseases

  • Reference work entry
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

In the last decade, substantial scientific progress has enabled a better understanding of the pathogenesis of cerebellar diseases and the improvement of their diagnoses. Extensive preclinical work is expanding the possibilities of using experimental models to analyze disease-specific mechanisms and to approach candidate therapeutic strategies to create a rationale for clinical trials that might finally lead to successful treatment. At present, drug treatment of cerebellar disorders has shown limited effectiveness and current treatment is primarily supportive. Until effective and selective pharmacological treatment leading to better quality of life as well as increased survival of patients with cerebellar diseases is found, physical and sensory rehabilitation techniques are revealing effective approaches for improving the patient’s quality of life. The objective of this chapter is to provide an updated summary of the treatments currently available for cerebellar disorders, in particular for spinocerebellar ataxias, and to discuss the new emerging therapeutic strategies that are resulting from the intensive ongoing basic and translational research devoted to cerebellar diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alvina K, Khodakhah K (2010a) KCa channels as therapeutic targets in episodic ataxia type-2. J Neurosci 30:7249–7257

    Article  PubMed  CAS  Google Scholar 

  • Alvina K, Khodakhah K (2010b) The therapeutic mode of action of 4-aminopyridine in cerebellar ataxia. J Neurosci 30:7258–7268

    Article  PubMed  CAS  Google Scholar 

  • Amiel J, Maziere JC, Beucler I et al (1995) Familial isolated vitamin E deficiency. Extensive study of a large family with a 5-year therapeutic follow-up. J Inherit Metab Dis 18:333–340

    Article  PubMed  CAS  Google Scholar 

  • Artuch R, Aracil A, Mas A et al (2002) Friedreich’s ataxia: idebenone treatment in early stage patients. Neuropediatrics 33:190–193

    Article  PubMed  CAS  Google Scholar 

  • Baldwin EJ, Gibberd FB, Harley C et al (2010) The effectiveness of long-term dietary therapy in the treatment of adult Refsum disease. J Neurol Neurosurg Psychiatry 81:954–957

    Article  PubMed  Google Scholar 

  • Berginer VM, Salen G, Shefer S (1984) Long-term treatment of cerebrotendinous xanthomatosis with chenodeoxycholic acid. N Engl J Med 311:1649–1652

    Article  PubMed  CAS  Google Scholar 

  • Boddaert N, Le Quan Sang KH, Rotig A et al (2007) Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110:401–408

    Article  PubMed  CAS  Google Scholar 

  • Boesch S, Sturm B, Hering S et al (2007) Friedreich’s ataxia: clinical pilot trial with recombinant human erythropoietin. Ann Neurol 62:521–524

    Article  PubMed  CAS  Google Scholar 

  • Boesch S, Sturm B, Hering S et al (2008) Neurological effects of recombinant human erythropoietin in Friedreich’s ataxia: a clinical pilot trial. Mov Disord 23:1940–1944

    Article  PubMed  Google Scholar 

  • Bordet T, Buisson B, Michaud M et al (2007) Identification and characterization of cholest-4-en-3-one, oxime (TRO19622), a novel drug candidate for amyotrophic lateral sclerosis. J Pharmacol Exp Ther 322:709–720

    Article  PubMed  CAS  Google Scholar 

  • Botez MI, Young SN, Botez T et al (1991) Treatment of heredo-degenerative ataxias with amantadine hydrochloride. Can J Neurol Sci 18:307–311

    PubMed  CAS  Google Scholar 

  • Buhmann C, Bussopulos A, Oechsner M (2003) Dopaminergic response in Parkinsonian phenotype of Machado-Joseph disease. Mov Disord 18:219–221

    Article  PubMed  Google Scholar 

  • Burnett R, Melander C, Puckett JW et al (2006) DNA sequence-specific polyamides alleviate transcription inhibition associated with long GAA.TTC repeats in Friedreich’s ataxia. Proc Natl Acad Sci USA 103:11497–11502

    Article  PubMed  CAS  Google Scholar 

  • Buyse G, Mertens L, Di Salvo G et al (2003) Idebenone treatment in Friedreich’s ataxia: neurological, cardiac, and biochemical monitoring. Neurology 60:1679–1681

    Article  PubMed  CAS  Google Scholar 

  • Cavalier L, Ouahchi K, Kayden HJ et al (1998) Ataxia with isolated vitamin E deficiency: heterogeneity of mutations and phenotypic variability in a large number of families. Am J Hum Genet 62:301–310

    Article  PubMed  CAS  Google Scholar 

  • Cernak K, Stevens V, Price R et al (2008) Locomotor training using body-weight support on a treadmill in conjunction with ongoing physical therapy in a child with severe cerebellar ataxia. Phys Ther 88:88–97

    Article  PubMed  Google Scholar 

  • Chan HY, Warrick JM, Gray-Board GL et al (2000) Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum Mol Genet 9:2811–2820

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Ona VO, Li M et al (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 6:797–801

    Article  PubMed  CAS  Google Scholar 

  • Chintawar S, Hourez R, Ravella A et al (2009) Grafting neural precursor cells promotes functional recovery in an SCA1 mouse model. J Neurosci 29:13126–13135

    Article  PubMed  CAS  Google Scholar 

  • Cooper JM, Korlipara LV, Hart PE et al (2008) Coenzyme Q10 and vitamin E deficiency in Friedreich’s ataxia: predictor of efficacy of vitamin E and coenzyme Q10 therapy. Eur J Neurol 15:1371–1379

    Article  PubMed  CAS  Google Scholar 

  • D’Ambrosio R, Leone M, Rosso MG et al (1987) Disability and quality of life in hereditary ataxias: a self-administered postal questionnaire. Int Disabil Stud 9:10–14

    Article  PubMed  Google Scholar 

  • De Rosa A, Striano P, Barbieri F et al (2006) Suppression of myoclonus in SCA2 by piracetam. Mov Disord 21:116–118

    Article  PubMed  Google Scholar 

  • Dedeoglu A, Kubilus JK, Jeitner TM et al (2002) Therapeutic effects of cystamine in a murine model of Huntington’s disease. J Neurosci 22:8942–8950

    PubMed  CAS  Google Scholar 

  • Del Gaizo V, Payne RM (2003) A novel TAT-mitochondrial signal sequence fusion protein is processed, stays in mitochondria, and crosses the placenta. Mol Ther 7:720–730

    Article  PubMed  CAS  Google Scholar 

  • Di Prospero NA, Baker A, Jeffries N et al (2007) Neurological effects of high-dose idebenone in patients with Friedreich’s ataxia: a randomised, placebo-controlled trial. Lancet Neurol 6:878–886

    Article  PubMed  CAS  Google Scholar 

  • Dokmanovic M, Marks PA (2005) Prospects: histone deacetylase inhibitors. J Cell Biochem 96:293–304

    Article  PubMed  CAS  Google Scholar 

  • Dotti MT, Lutjohann D, von Bergmann K et al (2004) Normalisation of serum cholestanol concentration in a patient with cerebrotendinous xanthomatosis by combined treatment with chenodeoxycholic acid, simvastatin and LDL apheresis. Neurol Sci 25:185–191

    Article  PubMed  CAS  Google Scholar 

  • Erceg S, Ronaghi M, Ivan Z et al (2010) Efficient differentiation of human embryonic stem cells into functional cerebellar-like cells. Stem Cells Dev 19:1745–1756

    Article  PubMed  CAS  Google Scholar 

  • Eunson LH, Rea R, Zuberi SM et al (2000) Clinical, genetic, and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability. Ann Neurol 48:647–656

    Article  PubMed  CAS  Google Scholar 

  • Fernandez AM, Carro EM, Lopez-Lopez C et al (2005) Insulin-like growth factor I treatment for cerebellar ataxia: Addressing a common pathway in the pathological cascade? Brain Res Rev 50:134–141

    Article  PubMed  CAS  Google Scholar 

  • Ferrara JM, Adam OR, Ondo WG (2009) Treatment of fragile-X-associated tremor/ataxia syndrome with deep brain stimulation. Mov Disord 24:149–151

    Article  PubMed  Google Scholar 

  • Freeman W, Wszolek Z (2005) Botulinum toxin type A for treatment of spasticity in spinocerebellar ataxia type 3 (Machado–Joseph disease). Mov Disord 20:644

    Article  PubMed  Google Scholar 

  • Freund JE, Stetts DM (2010) Use of trunk stabilization and locomotor training in an adult with cerebellar ataxia: a single system design. Physiother Theory Pract 26:447–458

    Article  PubMed  Google Scholar 

  • Gabsi S, Gouider-Khouja N, Belal S et al (2001) Effect of vitamin E supplementation in patients with ataxia with vitamin E deficiency. Eur J Neurol 8:477–481

    Article  PubMed  CAS  Google Scholar 

  • Gage FH (2002) Neurogenesis in the adult brain. J Neurosci 22:612–613

    PubMed  CAS  Google Scholar 

  • Gatchel JR, Watase K, Thaller C et al (2008) The insulin-like growth factor pathway is altered in spinocerebellar ataxia type 1 and type 7. Proc Natl Acad Sci USA 105:1291–1296

    Article  PubMed  CAS  Google Scholar 

  • Gauthier S (2009) Dimebon improves cognitive function in people with mild to moderate Alzheimer’s disease. Evid Based Ment Health 12:21

    Article  PubMed  Google Scholar 

  • Gomez-Sebastian S, Gimenez-Cassina A, Diaz-Nido J et al (2007) Infectious delivery and expression of a 135 kb human FRDA genomic DNA locus complements Friedreich’s ataxia deficiency in human cells. Mol Ther 15:248–254

    Article  PubMed  CAS  Google Scholar 

  • Gottesfeld JM (2007) Small molecules affecting transcription in Friedreich ataxia. Pharmacol Ther 116:236–248

    Article  PubMed  CAS  Google Scholar 

  • Graham JV, Eustace C, Brock K et al (2009) The Bobath concept in contemporary clinical practice. Top Stroke Rehabil 16:57–68

    Article  PubMed  Google Scholar 

  • Grant L, Sun J, Xu H et al (2006) Rational selection of small molecules that increase transcription through the GAA repeats found in Friedreich’s ataxia. FEBS Lett 580:5399–5405

    Article  PubMed  CAS  Google Scholar 

  • Griggs RC, Moxley RT 3rd, Lafrance RA et al (1978) Hereditary paroxysmal ataxia: response to acetazolamide. Neurology 28:1259–1264

    Article  PubMed  CAS  Google Scholar 

  • Gutsche HU, Siegmund JB, Hoppmann I (1996) Lipapheresis: an immunoglobulin-sparing treatment for Refsum’s disease. Acta Neurol Scand 94:190–193

    Article  PubMed  CAS  Google Scholar 

  • Harris-Love MO, Siegel KL, Paul SM et al (2004) Rehabilitation management of Friedreich ataxia: lower extremity force-control variability and gait performance. Neurorehabil Neural Repair 18:117–124

    Article  PubMed  Google Scholar 

  • Hausse AO, Aggoun Y, Bonnet D et al (2002) Idebenone and reduced cardiac hypertrophy in Friedreich’s ataxia. Heart 87:346–349

    Article  PubMed  CAS  Google Scholar 

  • Heiser V, Scherzinger E, Boeddrich A et al (2000) Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: implications for Huntington’s disease therapy. Proc Natl Acad Sci USA 97:6739–6744

    Article  PubMed  CAS  Google Scholar 

  • Heiser V, Engemann S, Brocker W et al (2002) Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington’s disease by using an automated filter retardation assay. Proc Natl Acad Sci USA 99:16400–16406

    Article  PubMed  CAS  Google Scholar 

  • Hening WA, Allen RP, Ondo WG et al (2010) Rotigotine improves restless legs syndrome: a 6-month randomized, double-blind, placebo-controlled trial in the United States. Mov Disord 25:1675–1683

    Article  PubMed  Google Scholar 

  • Herman D, Jenssen K, Burnett R et al (2006) Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol 2:551–558

    Article  PubMed  CAS  Google Scholar 

  • Hirano M, Quinzii CM, Dimauro S (2006) Restoring balance to ataxia with coenzyme Q10 deficiency. J Neurol Sci 246:11–12

    Article  PubMed  Google Scholar 

  • Holtmann M, Opp J, Tokarzewski M et al (2002) Human epilepsy, episodic ataxia type 2, and migraine. Lancet 359:170–171

    Article  PubMed  CAS  Google Scholar 

  • Ilg W, Synofzik M, Brotz D et al (2009) Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology 73:1823–1830

    Article  PubMed  CAS  Google Scholar 

  • Ince Gunal D, Agan K, Afsar N et al (2008) The effect of piracetam on ataxia: clinical observations in a group of autosomal dominant cerebellar ataxia patients. J Clin Pharm Ther 33:175–178

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Kuwabara S, Sakakibara R et al (2003) Combined treatment with LDL-apheresis, chenodeoxycholic acid and HMG-CoA reductase inhibitor for cerebrotendinous xanthomatosis. J Neurol Sci 216:179–182

    Article  PubMed  CAS  Google Scholar 

  • Jen J, Kim GW, Baloh RW (2004) Clinical spectrum of episodic ataxia type 2. Neurology 62:17–22

    Article  PubMed  CAS  Google Scholar 

  • Kanai K, Kuwabara S, Arai K et al (2003) Muscle cramp in Machado-Joseph disease: altered motor axonal excitability properties and mexiletine treatment. Brain 126:965–973

    Article  PubMed  Google Scholar 

  • Kanai K, Sakakibara R, Uchiyama T et al (2007) Sporadic case of spinocerebellar ataxia type 17: treatment observations for managing urinary and psychotic symptoms. Mov Disord 22:441–443

    Article  PubMed  Google Scholar 

  • Karpuj MV, Becher MW, Springer JE et al (2002) Prolonged survival and decreased abnormal movements in transgenic model of Huntington disease, with administration of the transglutaminase inhibitor cystamine. Nat Med 8:143–149

    Article  PubMed  CAS  Google Scholar 

  • Kayden HJ (2001) The genetic basis of vitamin E deficiency in humans. Nutrition 17:797–798

    Article  PubMed  CAS  Google Scholar 

  • Kearney M, Orrell RW, Fahey M et al (2009) Antioxidants and other pharmacological treatments for Friedreich ataxia. Cochrane Database Syst Rev (4): Art. No.: CD007791. DOI: 10.1002/14651858.CD007791.pub2

    Google Scholar 

  • Keene CD, Rodrigues CM, Eich T et al (2002) Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington’s disease. Proc Natl Acad Sci USA 99:10671–10676

    Article  PubMed  CAS  Google Scholar 

  • Kieran D, Kalmar B, Dick JR et al (2004) Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med 10:402–405

    Article  PubMed  CAS  Google Scholar 

  • Klein A, Boltshauser E, Jen J et al (2004) Episodic ataxia type 1 with distal weakness: a novel manifestation of a potassium channelopathy. Neuropediatrics 35:147–149

    Article  PubMed  CAS  Google Scholar 

  • Lee PH, Kim JW, Bang OY et al (2008) Autologous mesenchymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy. Clin Pharmacol Ther 83:723–730

    Article  PubMed  CAS  Google Scholar 

  • Leinninger GM, Feldman EL (2005) Insulin-like growth factors in the treatment of neurological disease. Endocr Dev 9:135–159

    Article  PubMed  CAS  Google Scholar 

  • Lesort M, Lee M, Tucholski J et al (2003) Cystamine inhibits caspase activity. J Biol Chem 278:3825–3830

    Article  PubMed  CAS  Google Scholar 

  • Lim F, Palomo GM, Mauritz C et al (2007) Functional recovery in a Friedreich’s ataxia mouse model by frataxin gene transfer using an HSV-1 amplicon vector. Mol Ther 15:1072–1078

    PubMed  CAS  Google Scholar 

  • Lim CK, Kalinowski DS, Richardson DR (2008) Protection against hydrogen peroxide-mediated cytotoxicity in Friedreich’s ataxia fibroblasts using novel iron chelators of the 2-pyridylcarboxaldehyde isonicotinoyl hydrazone class. Mol Pharmacol 74:225–235

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Tang TS, Tu H et al (2009) Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci 29:9148–9162

    Article  PubMed  CAS  Google Scholar 

  • Lock RJ, Tengah DP, Williams AJ et al (2006) Cerebellar ataxia, peripheral neuropathy, “gluten sensitivity” and anti-neuronal autoantibodies. Clin Lab 52:589–592

    PubMed  Google Scholar 

  • Louboutin JP, Reyes BA, Van Bockstaele EJ et al (2010) Gene transfer to the cerebellum. Cerebellum 9(4):587–597

    Article  PubMed  Google Scholar 

  • Lynch DR, Perlman SL, Meier T (2010) A phase 3, double-blind, placebo-controlled trial of idebenone in friedreich ataxia. Arch Neurol 67:941–947

    Article  PubMed  Google Scholar 

  • Manto M (2008) The cerebellum, cerebellar disorders, and cerebellar research–two centuries of discoveries. Cerebellum 7:505–516

    Article  PubMed  Google Scholar 

  • Manto M, Marmolino D (2009) Cerebellar ataxias. Curr Opin Neurol 22:419–429

    Article  PubMed  Google Scholar 

  • Maring JR, Croarkin E (2007) Presentation and progression of Friedreich ataxia and implications for physical therapist examination. Phys Ther 87:1687–1696

    Article  PubMed  Google Scholar 

  • Mariotti C, Solari A, Torta D et al (2003) Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology 60:1676–1679

    Article  PubMed  CAS  Google Scholar 

  • Mariotti C, Gellera C, Rimoldi M et al (2004) Ataxia with isolated vitamin E deficiency: neurological phenotype, clinical follow-up and novel mutations in TTPA gene in Italian families. Neurol Sci 25:130–137

    Article  PubMed  CAS  Google Scholar 

  • Martin CL, Tan D, Bragge P et al (2009) Effectiveness of physiotherapy for adults with cerebellar dysfunction: a systematic review. Clin Rehabil 23:15–26

    Article  PubMed  CAS  Google Scholar 

  • Martinello F, Fardin P, Ottina M et al (1998) Supplemental therapy in isolated vitamin E deficiency improves the peripheral neuropathy and prevents the progression of ataxia. J Neurol Sci 156:177–179

    Article  PubMed  CAS  Google Scholar 

  • Maschke M, Gomez CM, Ebner TJ et al (2004) Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. J Neurophysiol 91:230–238

    Article  PubMed  Google Scholar 

  • Matilla-Dueñas A, Goold R, Giunti P (2006) Molecular pathogenesis of spinocerebellar ataxias. Brain 129:1357–1370

    Article  Google Scholar 

  • Matilla-Dueñas A, Sanchez I, Corral-Juan M et al (2010) Cellular and molecular pathways triggering neurodegeneration in the spinocerebellar ataxias. Cerebellum 9:148–166

    Article  PubMed  CAS  Google Scholar 

  • Menzies FM, Rubinsztein DC (2010) Broadening the therapeutic scope rapamycin treatment. Autophagy 6:286–287

    Article  PubMed  CAS  Google Scholar 

  • Mestre T, Ferreira J, Coelho MM et al (2009) Therapeutic interventions for symptomatic treatment in Huntington’s disease. Cochrane Database Syst Rev (3): Art. No.: CD006456. DOI: 10.1002/14651858.CD006456.pub2

    Google Scholar 

  • Missaoui B, Thoumie P (2009) How far do patients with sensory ataxia benefit from so-called “proprioceptive rehabilitation”? Neurophysiol Clin 39:229–233

    Article  PubMed  CAS  Google Scholar 

  • Mosser DD, Morimoto RI (2004) Molecular chaperones and the stress of oncogenesis. Oncogene 23:2907–2918

    Article  PubMed  CAS  Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22

    Article  PubMed  CAS  Google Scholar 

  • Najimi M, Sokal E (2005) Liver cell transplantation. Minerva Pediatr 57:243–257

    PubMed  CAS  Google Scholar 

  • Nakamura K, Yoshida K, Miyazaki D et al (2009) Spinocerebellar ataxia type 6 (SCA6): clinical pilot trial with gabapentin. J Neurol Sci 278:107–111

    Article  PubMed  CAS  Google Scholar 

  • Nanri K, Okita M, Takeguchi M et al (2009) Intravenous immunoglobulin therapy for autoantibody-positive cerebellar ataxia. Intern Med 48:783–790

    Article  PubMed  Google Scholar 

  • Naoi M, Maruyama W, Yi H et al (2009) Mitochondria in neurodegenerative disorders: regulation of the redox state and death signaling leading to neuronal death and survival. J Neural Transm 116:1371–1381

    Article  PubMed  CAS  Google Scholar 

  • Ogawa M (2004) Pharmacological treatments of cerebellar ataxia. Cerebellum 3:107–111

    Article  PubMed  CAS  Google Scholar 

  • Ona VO, Li M, Vonsattel JP et al (1999) Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature 399:263–267

    Article  PubMed  CAS  Google Scholar 

  • Pandolfo M (2008) Drug Insight: antioxidant therapy in inherited ataxias. Nat Clin Pract Neurol 4:86–96

    Article  PubMed  CAS  Google Scholar 

  • Pandolfo M, Pastore A (2009) The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J Neurol 256(Suppl 1):9–17

    Article  PubMed  CAS  Google Scholar 

  • Perlman SL (2004) Symptomatic and disease-modifying therapy for the progressive ataxias. Neurologist 10:275–289

    Article  PubMed  Google Scholar 

  • Perlmutter E, Gregory PC (2003) Rehabilitation treatment options for a patient with paraneoplastic cerebellar degeneration. Am J Phys Med Rehabil 82:158–162

    Article  PubMed  Google Scholar 

  • Pineda M, Arpa J, Montero R et al (2008) Idebenone treatment in paediatric and adult patients with Friedreich ataxia: long-term follow-up. Eur J Paediatr Neurol 12:470–475

    Article  PubMed  Google Scholar 

  • Pineda M, Montero R, Aracil A et al (2010) Coenzyme Q(10)-responsive ataxia: 2-year-treatment follow-up. Mov Disord 15:1262–1268

    Article  Google Scholar 

  • Rai M, Soragni E, Jenssen K et al (2008) HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS ONE 3:e1958

    Article  PubMed  CAS  Google Scholar 

  • Rai M, Soragni E, Chou CJ et al (2010) Two new pimelic diphenylamide HDAC inhibitors induce sustained frataxin upregulation in cells from Friedreich’s ataxia patients and in a mouse model. PLoS ONE 5:e8825

    Article  PubMed  CAS  Google Scholar 

  • Rapoport M, Lorberboum-Galski H (2009) TAT-based drug delivery system–new directions in protein delivery for new hopes? Expert Opin Drug Deliv 6:453–463

    Article  PubMed  CAS  Google Scholar 

  • Ravikumar B, Vacher C, Berger Z et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595

    Article  PubMed  CAS  Google Scholar 

  • Regal L, Ebberink MS, Goemans N et al (2010) Mutations in PEX10 are a cause of autosomal recessive ataxia. Ann Neurol 68:259–263

    PubMed  CAS  Google Scholar 

  • Ribai P, Pousset F, Tanguy ML et al (2007) Neurological, cardiological, and oculomotor progression in 104 patients with Friedreich ataxia during long-term follow-up. Arch Neurol 64:558–564

    Article  PubMed  Google Scholar 

  • Richter S, Dimitrova A, Maschke M et al (2005) Degree of cerebellar ataxia correlates with three-dimensional mri-based cerebellar volume in pure cerebellar degeneration. Eur Neurol 54:23–27

    Article  PubMed  Google Scholar 

  • Rimoldi M, Servadio A, Zimarino V (2001) Analysis of heat shock transcription factor for suppression of polyglutamine toxicity. Brain Res Bull 56:353–362

    Article  PubMed  CAS  Google Scholar 

  • Rinaldi C, Tucci T, Maione S et al (2009) Low-dose idebenone treatment in Friedreich’s ataxia with and without cardiac hypertrophy. J Neurol 256:1434–1437

    Article  PubMed  CAS  Google Scholar 

  • Ristori G, Romano S, Visconti A et al (2010) Riluzole in cerebellar ataxia: a randomized, double-blind, placebo-controlled pilot trial. Neurology 74:839–845

    Article  PubMed  CAS  Google Scholar 

  • Rustin P, von Kleist-Retzow JC, Chantrel-Groussard K et al (1999) Effect of idebenone on cardiomyopathy in Friedreich’s ataxia: a preliminary study. Lancet 354:477–479

    Article  PubMed  CAS  Google Scholar 

  • Ryu H, Rosas HD, Hersch SM et al (2005) The therapeutic role of creatine in Huntington’s disease. Pharmacol Ther 108:193–207

    Article  PubMed  CAS  Google Scholar 

  • Saha K, Jaenisch R (2009) Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 5:584–595

    Article  PubMed  CAS  Google Scholar 

  • Salen G, Batta AK, Tint GS et al (1994) Comparative effects of lovastatin and chenodeoxycholic acid on plasma cholestanol levels and abnormal bile acid metabolism in cerebrotendinous xanthomatosis. Metabolism 43:1018–1022

    Article  PubMed  CAS  Google Scholar 

  • Sanchez I, Xu CJ, Juo P et al (1999) Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22:623–633

    Article  PubMed  CAS  Google Scholar 

  • Sanchez I, Mahlke C, Yuan J (2003) Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421:373–379

    Article  PubMed  CAS  Google Scholar 

  • Saute JA, da Silva AC, Muller AP et al (2011) Serum insulin-like system alterations in patients with spinocerebellar ataxia type 3. Mov Disord 26:731–735

    Google Scholar 

  • Schmitz-Hubsch T, du Montcel ST, Baliko L et al (2006) Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66:1717–1720

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Hubsch T, Fimmers R, Rakowicz M et al (2010) Responsiveness of different rating instruments in spinocerebellar ataxia patients. Neurology 74:678–684

    Article  PubMed  CAS  Google Scholar 

  • Schols L, Haan J, Riess O et al (1998) Sleep disturbance in spinocerebellar ataxias: is the SCA3 mutation a cause of restless legs syndrome? Neurology 51:1603–1607

    Article  PubMed  CAS  Google Scholar 

  • Schulz JB, Boesch S, Burk K et al (2009) Diagnosis and treatment of Friedreich ataxia: a European perspective. Nat Rev Neurol 5:222–234

    Article  PubMed  Google Scholar 

  • Serra A, Liao K, Martinez-Conde S et al (2008) Suppression of saccadic intrusions in hereditary ataxia by memantine. Neurology 70:810–812

    Article  PubMed  CAS  Google Scholar 

  • Shults CW (2003) Coenzyme Q10 in neurodegenerative diseases. Curr Med Chem 10:1917–1921

    Article  PubMed  CAS  Google Scholar 

  • Sliwa JA, Thatcher S, Jet J (1994) Paraneoplastic subacute cerebellar degeneration: functional improvement and the role of rehabilitation. Arch Phys Med Rehabil 75:355–357

    Article  PubMed  CAS  Google Scholar 

  • Sokal EM, Smets F, Bourgois A et al (2003) Hepatocyte transplantation in a 4-year-old girl with peroxisomal biogenesis disease: technique, safety, and metabolic follow-up. Transplantation 76:735–738

    Article  PubMed  Google Scholar 

  • Strupp M, Schuler O, Krafczyk S et al (2003) Treatment of downbeat nystagmus with 3,4-diaminopyridine: a placebo-controlled study. Neurology 61:165–170

    Article  PubMed  CAS  Google Scholar 

  • Strupp M, Kalla R, Dichgans M et al (2004) Treatment of episodic ataxia type 2 with the potassium channel blocker 4-aminopyridine. Neurology 62:1623–1625

    Article  PubMed  CAS  Google Scholar 

  • Strupp M, Kalla R, Glasauer S et al (2008) Aminopyridines for the treatment of cerebellar and ocular motor disorders. Prog Brain Res 171:535–541

    Article  PubMed  Google Scholar 

  • Sturm B, Stupphann D, Kaun C et al (2005) Recombinant human erythropoietin: effects on frataxin expression in vitro. Eur J Clin Invest 35:711–717

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Machida Y, Niu S et al (2004) Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 10:148–154

    Article  PubMed  CAS  Google Scholar 

  • Tenzen T, Zembowicz F, Cowan CA (2010) Genome modification in human embryonic stem cells. J Cell Physiol 222:278–281

    Article  PubMed  CAS  Google Scholar 

  • Thomas EA, Coppola G, Desplats PA et al (2008) The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington’s disease transgenic mice. Proc Natl Acad Sci USA 105:15564–15569

    Article  PubMed  CAS  Google Scholar 

  • Traber MG, Sokol RJ, Kohlschutter A et al (1993) Impaired discrimination between stereoisomers of alpha-tocopherol in patients with familial isolated vitamin E deficiency. J Lipid Res 34:201–210

    PubMed  CAS  Google Scholar 

  • Tredget J, Kirov A, Kirov G (2010) Effects of chronic lithium treatment on renal function. J Affect Disord 126:436–440

    Article  PubMed  CAS  Google Scholar 

  • Trujillo-Martin MM, Serrano-Aguilar P, Monton-Alvarez F et al (2009) Effectiveness and safety of treatments for degenerative ataxias: a systematic review. Mov Disord 24:1111–1124

    Article  PubMed  Google Scholar 

  • Tsunemi T, Ishikawa K, Tsukui K et al (2010) The effect of 3,4-diaminopyridine on the patients with hereditary pure cerebellar ataxia. J Neurol Sci 292:81–84

    Article  PubMed  CAS  Google Scholar 

  • Tuite PJ, Rogaeva EA, St George-Hyslop PH et al (1995) Dopa-responsive parkinsonism phenotype of Machado-Joseph disease: confirmation of 14q CAG expansion. Ann Neurol 38:684–687

    Article  PubMed  CAS  Google Scholar 

  • Vaz DV, Schettino Rde C, Rolla de Castro TR et al (2008) Treadmill training for ataxic patients: a single-subject experimental design. Clin Rehabil 22:234–241

    Article  PubMed  Google Scholar 

  • Velasco-Sanchez D, Aracil A, Montero R et al (2010) Combined therapy with idebenone and deferiprone in patients with Friedreich’s Ataxia. Cerebellum 10(1):1–8

    Article  CAS  Google Scholar 

  • Verrips A, Wevers RA, Van Engelen BG et al (1999) Effect of simvastatin in addition to chenodeoxycholic acid in patients with cerebrotendinous xanthomatosis. Metabolism 48:233–238

    Article  PubMed  CAS  Google Scholar 

  • Vyas PM, Payne RM (2008) TAT opens the door. Mol Ther 16:647–648

    Article  PubMed  CAS  Google Scholar 

  • Watson MJ (2009) Systematic review of the effectiveness of physiotherapy for cerebellar dysfunction. Clin Rehabil 23:764–765

    Article  PubMed  Google Scholar 

  • Weinstein R (1999) Phytanic acid storage disease (Refsum’s disease): clinical characteristics, pathophysiology and the role of therapeutic apheresis in its management. J Clin Apher 14:181–184

    Article  PubMed  CAS  Google Scholar 

  • Xia H, Mao Q, Eliason SL et al (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10:816–820

    Article  PubMed  CAS  Google Scholar 

  • Yokota T, Shiojiri T, Gotoda T et al (1997) Friedreich-like ataxia with retinitis pigmentosa caused by the His101Gln mutation of the alpha-tocopherol transfer protein gene. Ann Neurol 41:826–832

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Yoshizawa T, Shibasaki F et al (2002) Chemical chaperones reduce aggregate formation and cell death caused by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Neurobiol Dis 10:88–99

    Article  PubMed  CAS  Google Scholar 

  • Zamel R, Khan R, Pollex RL et al (2008) Abetalipoproteinemia: two case reports and literature review. Orphanet J Rare Dis 3:19

    Article  PubMed  Google Scholar 

  • Zesiewicz TA, Sullivan KL (2008) Treatment of ataxia and imbalance with varenicline (chantix): report of 2 patients with spinocerebellar ataxia (types 3 and 14). Clin Neuropharmacol 31:363–365

    Article  PubMed  Google Scholar 

  • Zesiewicz TA, Sullivan KL, Gooch CL et al (2009) Subjective improvement in proprioception in 2 patients with atypical Friedreich ataxia treated with varenicline (Chantix). J Clin Neuromuscul Dis 10:191–193

    Article  PubMed  Google Scholar 

  • Zhang X, Smith DL, Meriin AB et al (2005) A potent small molecule inhibits polyglutamine aggregation in Huntington’s disease neurons and suppresses neurodegeneration in vivo. Proc Natl Acad Sci USA 102:892–897

    Article  PubMed  CAS  Google Scholar 

  • Zintzaras E, Kitsios GD, Papathanasiou AA et al (2010) Randomized trials of dopamine agonists in restless legs syndrome: a systematic review, quality assessment, and meta-analysis. Clin Ther 32:221–237

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Ivelisse Sanchez’s helpful comments and suggestions are kindly acknowledged. Dr. Antoni Matilla’s scientific research on ataxias is funded by the Spanish Ministry of Science and Innovation (BFU2008-00527/BMC), the Carlos III Health Institute (CP08/00027), the Latin American Science and Technology Development Programme (CYTED) (210RT0390), the European Commission (EUROSCA project, LHSM-CT-2004-503304), and the Fundació de la Marató de TV3 (Televisió de Catalunya). We are indebted to the Spanish Ataxia Association (FEDAES), the Spanish Federation for Rare Diseases (FEDER), and the ataxia patients for their continuous support and motivation. Antoni Matilla is a Miguel Servet Investigator in Neurosciences of the Spanish National Health System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Matilla-Dueñas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Matilla-Dueñas, A., Serrano, C., Ivánovic, Y., Alvarez, R., Latorre, P., Genís, D. (2013). Novel Therapeutic Challenges in Cerebellar Diseases. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_106

Download citation

Publish with us

Policies and ethics