Skip to main content

Comparison Between Agrobacterium-Mediated and Direct Gene Transfer Using the Gene Gun

  • Protocol
  • First Online:
Biolistic DNA Delivery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 940))

Abstract

Agrobacterium-mediated transformation and direct gene transfer using the gene gun (microparticle ­bombardment) are the two most widely used methods for plant genetic modification. The Agrobacterium method has been successfully practiced in dicots for many years, but only recently have efficient protocols been developed for grasses. Microparticle bombardment has evolved as a method delivering exogenous nucleic acids into plant genome and is a commonly employed technique in plant science. Here these two systems are compared for transformation efficiency, transgene integration, and transgene expression when used to transform tall fescue (Festuca arundinacea Schreb.). The tall fescue transformation protocols lead to the production of large numbers of fertile, independent transgenic lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Danford JC (1988) The biolistic process. Trends Biotechnol 6:299–302

    Article  Google Scholar 

  2. Ishaida Y et al (1996) High frequency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  Google Scholar 

  3. Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    Article  PubMed  CAS  Google Scholar 

  4. Gonzalez A et al (1998) Regeneration of transgenic plants of cassava (Manihot esculenta Crantz.) through Agrobacterium-mediated transformation of embryogenic suspension cultures. Plant Cell Rep 17:827–831

    Article  CAS  Google Scholar 

  5. Altpeter F et al (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327

    Article  Google Scholar 

  6. Francois I, Broekaert W, Cammue B (2002) Different approaches for multi-transgene-stacking in plants. Plant Sci 163:281–295

    Article  CAS  Google Scholar 

  7. Fu XD et al (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res 9:11–19

    Article  PubMed  CAS  Google Scholar 

  8. Breitler JC et al (2002) Efficient microprojectile bombardment mediated transformation of rice using gene cassettes. Theor Appl Genet 104:709–719

    Article  PubMed  CAS  Google Scholar 

  9. Loc NT et al (2002) Linear transgene constructs lacking vector backbone sequences generate transgenic rice plants which accumulate higher levels of proteins conferring insect resistance. Mol Breed 9:231–244

    Article  CAS  Google Scholar 

  10. Romano A et al (2003) Transgene organization in potato after particle bombardment-mediated (co)transformation using plasmids and gene cassettes. Transgenic Res 12:461–473

    Article  PubMed  CAS  Google Scholar 

  11. Romano A et al (2005) Expression of poly-3-(R)-hydroxyalkanoate (PHA) polymerase and acyl-CoA-transacylase in plastids of transgenic potato leads to the synthesis of a hydrophobic polymer, presumably medium-chain-length PHAs. Planta 220:455–464

    Article  PubMed  CAS  Google Scholar 

  12. Spangenberg G et al (1995) Transgenic tall ­fescue (Festuca arundinacea) and red fescue (F. rubra) plants from microprojectile bombardment of embryogenic suspension cells. J Plant Physiol 145:693–701

    Article  CAS  Google Scholar 

  13. Cho MJ, Ha CD, Lemaux PG (2000) Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues. Plant Cell Rep 19:1084–1089

    Article  CAS  Google Scholar 

  14. Bai Y, Qu RD (2001) Genetic transformation of elite turf-type cultivars of tall fescue. Int Turf Soc Res J 9:129–136

    Google Scholar 

  15. Chen L, Auh C, Dowling P (2003) Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down regulation of cinnamyl alcohol dehydrogenase. Plant Biotechnol J 1:437–449

    Article  PubMed  CAS  Google Scholar 

  16. Wang ZY et al (2003) Inheritance of transgenes in tall fescue (Festuca arundinacea). In Vitro Cell Dev Biol-Plant 39:277–282

    Article  CAS  Google Scholar 

  17. Chen L et al (2004) Transgenic down regulation of caffeic acid o-methyltransferase (COMT) led to improved digestibility in tall fescue (Festuca arundinacea). Funct Plant Biol 31:235–245

    Article  CAS  Google Scholar 

  18. Wang ZY, Ge YX (2005) Agrobacterium-mediated high efficiency transformation of tall fescue (Festuca Arundinacea). J Plant Physiol 162:103–113

    Article  PubMed  CAS  Google Scholar 

  19. Dong SJ, Qu RD (2005) High efficiency transformation of tall fescue with Agrobacterium tumefaciens. Plant Sci 168:1453–1458

    Article  CAS  Google Scholar 

  20. Gao CX et al (2008) Comparative analysis of transgenic tall fescue (Festuca arundinacea Schreb.) plants obtained by Agrobacterium-mediated transformation and particle bombardment. Plant Cell Rep 27:1601–1609

    Article  PubMed  CAS  Google Scholar 

  21. Tingay S et al (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  22. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  23. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 9.31–9.62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caixia Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gao, C., Nielsen, K.K. (2013). Comparison Between Agrobacterium-Mediated and Direct Gene Transfer Using the Gene Gun. In: Sudowe, S., Reske-Kunz, A. (eds) Biolistic DNA Delivery. Methods in Molecular Biology, vol 940. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-110-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-110-3_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-109-7

  • Online ISBN: 978-1-62703-110-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics