Skip to main content

Mutated Human Embryonic Stem Cells for the Study of Human Genetic Disorders

  • Protocol
  • First Online:
Human Embryonic Stem Cells Handbook

Part of the book series: Methods in Molecular Biology ((MIMB,volume 873))

Abstract

Human embryonic stem cells (HESCs) are of great interest in biology and medicine due to their ability to grow indefinitely in culture while maintaining their ability to differentiate into all different cell types in the human body. In addition, HESCs can be used for better understanding the key developmental processes and can, therefore, serve for studying genetic disorders for which no good research model exists. Preimplantation genetic diagnosis of in vitro derived embryos results in affected-spare blastocysts with specific known inherited mutations.These affected blastocysts can be used for the derivation of disease-bearing HESCs, which would serve for studying the molecular and pathophysiological mechanisms underlying the genetic disease for which they were diagnosed. This chapter describes the methods to derive HESCs carrying mutations for inherited disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saxena AK, Singh D, Gupta J (2010) Role of stem cell research in therapeutic purpose – a hope for new horizon in medical biotechnology. J Exp Ther Oncol 8:223–233

    PubMed  Google Scholar 

  2. Epsztejn-Litman S, Eiges R (2010) Genetic manipulation of human embryonic stem cells. Methods Mol Biol 584:387–411

    Article  PubMed  CAS  Google Scholar 

  3. Schwarz SC, Schwarz J (2010) Translation of stem cell therapy for neurological diseases. Transl Res 156:155–160

    Article  PubMed  CAS  Google Scholar 

  4. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6:88–95

    PubMed  CAS  Google Scholar 

  5. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404

    Article  PubMed  CAS  Google Scholar 

  6. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  7. Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278

    Article  PubMed  CAS  Google Scholar 

  8. Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 97:11307–11312

    Article  PubMed  CAS  Google Scholar 

  9. Dvash T, Ben-Yosef D, Eiges R (2006) Human embryonic stem cells as a powerful tool for studying human embryogenesis. Pediatr Res 60:111–117

    Article  PubMed  Google Scholar 

  10. Heard E (2004) Recent advances in X-chromosome inactivation. Curr Opin Cell Biol 16:247–255

    Article  PubMed  CAS  Google Scholar 

  11. Lindenbaum MH, Grosveld F (1990) An in vitro globin gene switching model based on differentiated embryonic stem cells. Genes Dev 4:2075–2085

    Article  PubMed  CAS  Google Scholar 

  12. Krooth RS, Weinberg AN (1961) Studies on cell lines developed from the tissues of patients with galactosemia. J Exp Med 113:1155–1171

    Article  PubMed  CAS  Google Scholar 

  13. Danes BS, Bearn AG (1966) Hurler’s syndrome. A genetic study in cell culture. J Exp Med 123:1–16

    Article  PubMed  CAS  Google Scholar 

  14. Khavari PA (2006) Modelling cancer in human skin tissue. Nat Rev Cancer 6:270–280

    Article  PubMed  CAS  Google Scholar 

  15. Garcia CK, Wright WE, Shay JW (2007) Human diseases of telomerase dysfunction: insights into tissue aging. Nucleic Acids Res 35:7406–7416

    Article  PubMed  CAS  Google Scholar 

  16. Eiges R, Urbach A, Malcov M, Frumkin T, Schwartz T, Amit A, Yaron Y, Eden A, Yanuka O, Benvenisty N, Ben-Yosef D (2007) Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 1:568–577

    Article  PubMed  CAS  Google Scholar 

  17. Harvey BK, Richie CT, Hoffer BJ, Airavaara M (2011) Transgenic animal models of neurodegeneration based on human genetic studies. J Neural Transm 118(1):27–45

    Article  PubMed  Google Scholar 

  18. Zang JB, Nosyreva ED, Spencer CM, Volk LJ, Musunuru K, Zhong R, Stone EF, Yuva-Paylor LA, Huber KM, Paylor R, Darnell JC, Darnell RB (2009) A mouse model of the human Fragile X syndrome I304N mutation. PLoS Genet 5:e1000758

    Article  PubMed  Google Scholar 

  19. Dvash T, Mayshar Y, Darr H, McElhaney M, Barker D, Yanuka O, Kotkow KJ, Rubin LL, Benvenisty N, Eiges R (2004) Temporal gene expression during differentiation of human embryonic stem cells and embryoid bodies. Hum Reprod 19:2875–2883

    Article  PubMed  CAS  Google Scholar 

  20. Arguello PA, Gogos JA (2006) Modeling madness in mice: one piece at a time. Neuron 52:179–196

    Article  PubMed  CAS  Google Scholar 

  21. Urbach A, Schuldiner M, Benvenisty N (2004) Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells 22:635–641

    Article  PubMed  CAS  Google Scholar 

  22. Zwaka TP, Thomson JA (2003) Homologous recombination in human embryonic stem cells. Nat Biotechnol 21:319–321

    Article  PubMed  CAS  Google Scholar 

  23. Bedell MA, Largaespada DA, Jenkins NA, Copeland NG (1997) Mouse models of human disease. Part II: recent progress and future directions. Genes Dev 11:11–43

    Article  PubMed  Google Scholar 

  24. Elsea SH, Lucas RE (2002) The mousetrap: what we can learn when the mouse model does not mimic the human disease. ILAR J 43:66–79

    PubMed  CAS  Google Scholar 

  25. Xue H, Wu S, Papadeas ST, Spusta S, Swistowska AM, MacArthur CC, Mattson MP, Maragakis NJ, Capecchi MR, Rao MS, Zeng X, Liu Y (2009) A targeted neuroglial reporter line generated by homologous recombination in human embryonic stem cells. Stem Cells 27:1836–1846

    Article  PubMed  CAS  Google Scholar 

  26. Verlinsky Y, Strelchenko N, Kukharenko V, Rechitsky S, Verlinsky O, Galat V, Kuliev A (2005) Human embryonic stem cell lines with genetic disorders. Reprod Biomed Online 10:105–110

    Article  PubMed  CAS  Google Scholar 

  27. Pickering SJ, Minger SL, Patel M, Taylor H, Black C, Burns CJ, Ekonomou A, Braude PR (2005) Generation of a human embryonic stem cell line encoding the cystic fibrosis mutation deltaF508, using preimplantation genetic diagnosis. Reprod Biomed Online 10:390–397

    Article  PubMed  Google Scholar 

  28. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–1221

    Article  PubMed  CAS  Google Scholar 

  29. Urbach A, Bar-Nur O, Daley GQ, Benvenisty N (2010) Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6:407–411

    Article  PubMed  CAS  Google Scholar 

  30. Liu H, Ye Z, Kim Y, Sharkis S, Jang YY (2010) Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Hepatology 51:1810–1819

    Article  PubMed  CAS  Google Scholar 

  31. Frydman N, Feraud O, Bas C, Amit M, Frydman R, Bennaceur-Griscelli A, Tachdjian G (2009) Characterization of human PGD blastocysts with unbalanced chromosomal translocations and human embryonic stem cell line derivation? Reprod Biomed Online 19 Suppl 4: 4199

    Google Scholar 

  32. Frumkin T, Malcov M, Telias M, Gold V, Schwartz T, Azem F, Amit A, Yaron Y, Ben-Yosef D (2010) Human embryonic stem cells carrying mutations for severe genetic disorders. In Vitro Cell Dev Biol Anim 46:327–336

    Article  PubMed  Google Scholar 

  33. Yaron Y, Gamzu R, Malcov M (2001) Genetic analysis of the embryo. In: Gardner DK, Weissman A, Howles CM, Shoham Z (eds) Textbook of assisted reproductive techniques: laboratory and clinical perspectives. Martin Dunitz, London, UK, pp 319–332

    Google Scholar 

  34. Sermon K, Van Steirteghem A, Liebaers I (2004) Preimplantation genetic diagnosis. Lancet 363:1633–1641

    Article  PubMed  Google Scholar 

  35. Harper JC, Bui TH (2002) Pre-implantation genetic diagnosis. Best Pract Res Clin Obstet Gynaecol 16:659–670

    Article  PubMed  Google Scholar 

  36. Malcov M, Naiman T, Yosef DB, Carmon A, Mey-Raz N, Amit A, Vagman I, Yaron Y (2007) Preimplantation genetic diagnosis for fragile X syndrome using multiplex nested PCR. Reprod Biomed Online 14:515–521

    Article  PubMed  CAS  Google Scholar 

  37. Malcov M, Schwartz T, Mei-Raz N, Yosef DB, Amit A, Lessing JB, Shomrat R, Orr-Urtreger A, Yaron Y (2004) Multiplex nested PCR for preimplantation genetic diagnosis of spinal muscular atrophy. Fetal Diagn Ther 19:199–206

    Article  PubMed  Google Scholar 

  38. Verlinsky Y, Kuliev A (1998) Progress in preimplantation genetics. J Assist Reprod Genet 15:9–11

    Article  PubMed  CAS  Google Scholar 

  39. Verlinsky Y, Munne S, Simpson JL, Kuliev A, Ao A, Ray P, Sermon K, Martin R, Strom C, Van Stairteghem A, Veiga A, Drury K, Williams S, Ginsberg N, Wilton L (1997) Current status of preimplantation diagnosis. J Assist Reprod Genet 14:72–75

    Article  PubMed  CAS  Google Scholar 

  40. Yaron Y, Schwartz T, Mey-Raz N, Amit A, Lessing JB, Malcov M (2005) Preimplantation genetic diagnosis of Canavan disease. Fetal Diagn Ther 20:465–468

    Article  PubMed  Google Scholar 

  41. Kastrinos F, Stoffel EM, Balmana J, Syngal S (2007) Attitudes toward prenatal genetic testing in patients with familial adenomatous polyposis. Am J Gastroenterol 102:1284–1290

    Article  PubMed  Google Scholar 

  42. Menon U, Harper J, Sharma A, Fraser L, Burnell M, ElMasry K, Rodeck C, Jacobs I (2007) Views of BRCA gene mutation carriers on preimplantation genetic diagnosis as a reproductive option for hereditary breast and ovarian cancer. Hum Reprod 22:1573–1577

    Article  PubMed  CAS  Google Scholar 

  43. Spits C, De Rycke M, Van Ranst N, Verpoest W, Lissens W, Van Steirteghem A, Liebaers I, Sermon K (2007) Preimplantation genetic diagnosis for cancer predisposition syndromes. Prenat Diagn 27:447–456

    Article  PubMed  CAS  Google Scholar 

  44. Staessen C, Platteau P, Van Assche E, Michiels A, Tournaye H, Camus M, Devroey P, Liebaers I, Van Steirteghem A (2004) Comparison of blastocyst transfer with or without preimplantation genetic diagnosis for aneuploidy screening in couples with advanced maternal age: a prospective randomized controlled trial. Hum Reprod 19:2849–2858

    Article  PubMed  Google Scholar 

  45. Verlinsky Y, Cohen J, Munne S, Gianaroli L, Simpson JL, Ferraretti AP, Kuliev A (2004) Over a decade of experience with preimplantation genetic diagnosis. Fertil Steril 82:302–303

    Article  PubMed  Google Scholar 

  46. Coonen E, Hopman AH, Geraedts JP, Ramaekers FC (1998) Application of in-situ hybridization techniques to study human preimplantation embryos: a review. Hum Reprod Update 4:135–152

    Article  PubMed  CAS  Google Scholar 

  47. Bradley CK, Scott HA, Chami O, Peura TT, Dumevska B, Schmidt U, Stojanov T (2011) Derivation of Huntington’s disease-affected human embryonic stem cell lines. Stem Cells Dev 20(3):495–502

    Article  PubMed  CAS  Google Scholar 

  48. Niclis JC, Trounson AO, Dottori M, Ellisdon AM, Bottomley SP, Verlinsky Y, Cram DS (2009) Human embryonic stem cell models of Huntington disease. Reprod Biomed Online 19:106–113

    Article  PubMed  CAS  Google Scholar 

  49. Peura T, Bosman A, Chami O, Jansen RP, Texlova K, Stojanov T (2008) Karyotypically normal and abnormal human embryonic stem cell lines derived from PGD-analyzed embryos. Cloning Stem Cells 10:203–216

    Article  PubMed  CAS  Google Scholar 

  50. Mateizel I, De Temmerman N, Ullmann U, Cauffman G, Sermon K, Van de Velde H, De Rycke M, Degreef E, Devroey P, Liebaers I, Van Steirteghem A (2006) Derivation of human embryonic stem cell lines from embryos obtained after IVF and after PGD for monogenic disorders. Hum Reprod 21:503–511

    Article  PubMed  CAS  Google Scholar 

  51. Mateizel I, Spits C, De Rycke M, Liebaers I, Sermon K (2010) Derivation, culture, and characterization of VUB hESC lines. In Vitro Cell Dev Biol Anim 46:300–308

    Article  PubMed  Google Scholar 

  52. Tropel P, Tournois J, Come J, Varela C, Moutou C, Fragner P, Cailleret M, Laabi Y, Peschanski M, Viville S (2010) High-efficiency derivation of human embryonic stem cell lines following pre-implantation genetic diagnosis. In Vitro Cell Dev Biol Anim 46:376–385

    Article  PubMed  Google Scholar 

  53. Turetsky T, Aizenman E, Gil Y, Weinberg N, Shufaro Y, Revel A, Laufer N, Simon A, Abeliovich D, Reubinoff BE (2008) Laser-assisted derivation of human embryonic stem cell lines from IVF embryos after preimplantation genetic diagnosis. Hum Reprod 23:46–53

    Article  PubMed  CAS  Google Scholar 

  54. Taei A, Gourabi H, Seifinejad A, Totonchi M, Shahbazi E, Valojerdi MR, Eftekhari P, Karimian L, Baharvand H (2010) Derivation of new human embryonic stem cell lines from preimplantation genetic screening and diagnosis-analyzed embryos. In Vitro Cell Dev Biol Anim 46:395–402

    Article  PubMed  Google Scholar 

  55. Candan ZN, Kahraman S (2010) Establishment and characterization of human embryonic stem cell lines, Turkey perspectives. In Vitro Cell Dev Biol Anim 46:345–355

    Article  PubMed  Google Scholar 

  56. Stephenson EL, Braude PR (2010) Derivation of the King’s College London human embryonic stem cell lines. In Vitro Cell Dev Biol Anim 46:178–185

    Article  PubMed  Google Scholar 

  57. Biancotti JC, Narwani K, Buehler N, Mandefro B, Golan-Lev T, Yanuka O, Clark A, Hill D, Benvenisty N, Lavon N (2010) Human embryonic stem cells as models for aneuploid chromosomal syndromes. Stem Cells 28:1530–1540

    Article  PubMed  CAS  Google Scholar 

  58. Narwani K, Biancotti JC, Golan-Lev T, Buehler N, Hill D, Shifman S, Benvenisty N, Lavon N (2010) Human embryonic stem cells from aneuploid blastocysts identified by pre-implantation genetic screening. In Vitro Cell Dev Biol Anim 46:309–316

    Article  PubMed  Google Scholar 

  59. Walker FO (2007) Huntington’s disease. Lancet 369:218–228

    Article  PubMed  CAS  Google Scholar 

  60. Duyao M, Ambrose C, Myers R, Novelletto A, Persichetti F, Frontali M, Folstein S, Ross C, Franz M, Abbott M et al (1993) Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet 4:387–392

    Article  PubMed  CAS  Google Scholar 

  61. Roze E, Bonnet C, Betuing S, Caboche J (2010) Huntington’s disease. Adv Exp Med Biol 685:45–63

    Article  PubMed  CAS  Google Scholar 

  62. Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90:905–981

    Article  PubMed  CAS  Google Scholar 

  63. Seriola A, Spits C, Simard JP, Hilven P, Haentjens P, Pearson CE, Sermon K (2011) Huntington’s and myotonic dystrophy hESCs: down-regulated trinucleotide repeat instability and mismatch repair machinery expression upon differentiation. Hum Mol Genet 20(1):176–185

    Article  PubMed  CAS  Google Scholar 

  64. Pearn J (1978) Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy. J Med Genet 15:409–413

    Article  PubMed  CAS  Google Scholar 

  65. Pearn J (1980) Classification of spinal muscular atrophies. Lancet 1:919–922

    Article  PubMed  CAS  Google Scholar 

  66. Pearn JH (1973) The gene frequency of acute Werdnig-Hoffmann disease (SMA type 1). A total population survey in North-East England. J Med Genet 10:260–265

    Article  PubMed  CAS  Google Scholar 

  67. Brzustowicz LM, Lehner T, Castilla LH, Penchaszadeh GK, Wilhelmsen KC, Daniels R, Davies KE, Leppert M, Ziter F, Wood D et al (1990) Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2-13.3. Nature 344:540–541

    Article  PubMed  CAS  Google Scholar 

  68. Melki J, Sheth P, Abdelhak S, Burlet P, Bachelot MF, Lathrop MG, Frezal J, Munnich A (1990) Mapping of acute (type I) spinal muscular atrophy to chromosome 5q12-q14. The French Spinal Muscular Atrophy Investigators. Lancet 336:271–273

    Article  PubMed  CAS  Google Scholar 

  69. Hsieh-Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH, Li H (2000) A mouse model for spinal muscular atrophy. Nat Genet 24:66–70

    Article  PubMed  CAS  Google Scholar 

  70. Wirth B, Herz M, Wetter A, Moskau S, Hahnen E, Rudnik-Schoneborn S, Wienker T, Zerres K (1999) Quantitative analysis of survival motor neuron copies: identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implications for genetic counseling. Am J Hum Genet 64:1340–1356

    Article  PubMed  CAS  Google Scholar 

  71. Crawford DC, Acuna JM, Sherman SL (2001) FMR1 and the fragile X syndrome: human genome epidemiology review. Genet Med 3:359–371

    Article  PubMed  CAS  Google Scholar 

  72. Penagarikano O, Mulle JG, Warren ST (2007) The pathophysiology of fragile x syndrome. Annu Rev Genomics Hum Genet 8:109–129

    Article  PubMed  CAS  Google Scholar 

  73. Musova Z, Mazanec R, Krepelova A, Ehler E, Vales J, Jaklova R, Prochazka T, Koukal P, Marikova T, Kraus J, Havlovicova M, Sedlacek Z (2009) Highly unstable sequence interruptions of the CTG repeat in the myotonic dystrophy gene. Am J Med Genet A 149A:1365–1374

    Article  PubMed  CAS  Google Scholar 

  74. Duchenne (1867) The pathology of paralysis with muscular degeneration (Paralysie Myosclerotique), or paralysis with apparent hypertrophy. Br Med J 2:541–542

    Article  PubMed  CAS  Google Scholar 

  75. Den Dunnen JT, Grootscholten PM, Bakker E, Blonden LA, Ginjaar HB, Wapenaar MC, van Paassen HM, van Broeckhoven C, Pearson PL, van Ommen GJ (1989) Topography of the Duchenne muscular dystrophy (DMD) gene: FIGE and cDNA analysis of 194 cases reveals 115 deletions and 13 duplications. Am J Hum Genet 45:835–847

    Google Scholar 

  76. Meregalli M, Farini A, Parolini D, Maciotta S, Torrente Y (2010) Stem cell therapies to treat muscular dystrophy: progress to date. BioDrugs 24:237–247

    Article  PubMed  CAS  Google Scholar 

  77. Ambartsumyan G, Clark AT (2008) Aneuploidy and early human embryo development. Hum Mol Genet 17:R10–R15

    Article  PubMed  CAS  Google Scholar 

  78. Lengerke C, Daley GQ (2009) Disease models from pluripotent stem cells. Ann N Y Acad Sci 1176:191–196

    Article  PubMed  CAS  Google Scholar 

  79. Baharvand H, Ashtiani SK, Taee A, Massumi M, Valojerdi MR, Yazdi PE, Moradi SZ, Farrokhi A (2006) Generation of new human embryonic stem cell lines with diploid and triploid karyotypes. Dev Growth Differ 48:117–128

    Article  PubMed  Google Scholar 

  80. Urbach A, Benvenisty N (2009) Studying early lethality of 45, XO (Turner’s syndrome) embryos using human embryonic stem cells. PLoS One 4:e4175

    Article  PubMed  Google Scholar 

  81. Lavon N, Narwani K, Golan-Lev T, Buehler N, Hill D, Benvenisty N (2008) Derivation of euploid human embryonic stem cells from aneuploid embryos. Stem Cells 26:1874–1882

    Article  PubMed  CAS  Google Scholar 

  82. Barbash-Hazan S, Frumkin T, Malcov M, Yaron Y, Cohen T, Azem F, Amit A, Ben-Yosef D (2009) Preimplantation aneuploid embryos undergo self-correction in correlation with their developmental potential. Fertil Steril 92:890–896

    Article  PubMed  Google Scholar 

  83. Sun X, Long X, Yin Y, Jiang Y, Chen X, Liu W, Zhang W, Du H, Li S, Zheng Y, Kong S, Pang Q, Shi Y, Huang Y, Huang S, Liao B, Xiao G, Wang W (2008) Similar biological characteristics of human embryonic stem cell lines with normal and abnormal karyotypes. Hum Reprod 23:2185–2193

    Article  PubMed  CAS  Google Scholar 

  84. Werbowetski-Ogilvie TE, Bosse M, Stewart M, Schnerch A, Ramos-Mejia V, Rouleau A, Wynder T, Smith MJ, Dingwall S, Carter T, Williams C, Harris C, Dolling J, Wynder C, Boreham D, Bhatia M (2009) Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol 27:91–97

    Article  PubMed  CAS  Google Scholar 

  85. Yang S, Lin G, Tan YQ, Deng LY, Yuan D, Lu GX (2010) Differences between karyotypically normal and abnormal human embryonic stem cells. Cell Prolif 43:195–206

    Article  PubMed  CAS  Google Scholar 

  86. Clarke DJ, Gimenez-Abian JF, Tonnies H, Neitzel H, Sperling K, Downes CS, Johnson RT (1998) Creation of monosomic derivatives of human cultured cell lines. Proc Natl Acad Sci USA 95:167–171

    Article  PubMed  CAS  Google Scholar 

  87. Gropp A (1982) Value of an animal model for trisomy. Virchows Arch A Pathol Anat Histol 395:117–131

    Article  PubMed  CAS  Google Scholar 

  88. Magnuson T, Smith S, Epstein CJ (1982) The development of monosomy 19 mouse embryos. J Embryol Exp Morphol 69:223–236

    PubMed  CAS  Google Scholar 

  89. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823

    Article  PubMed  Google Scholar 

  90. Knudson AG (2001) Two genetic hits (more or less) to cancer. Nat Rev Cancer 1:157–162

    Article  PubMed  CAS  Google Scholar 

  91. Tamura K, Utsunomiya J, Iwama T, Furuyama J, Takagawa T, Takeda N, Fukuda Y, Matsumoto T, Nishigami T, Kusuhara K, Sagayama K, Nakagawa K, Yamamura T (2004) Mechanism of carcinogenesis in familial tumors. Int J Clin Oncol 9:232–245

    Article  PubMed  Google Scholar 

  92. Tucker T, Friedman JM (2002) Pathogenesis of hereditary tumors: beyond the “two-hit” hypothesis. Clin Genet 62:345–357

    Article  PubMed  CAS  Google Scholar 

  93. Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA (2006) Feeder-independent culture of human embryonic stem cells. Nat Methods 3:637–646

    Article  PubMed  CAS  Google Scholar 

  94. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, Llanas RA, Thomson JA (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24:185–187

    Article  PubMed  CAS  Google Scholar 

  95. Coonen E, Dumoulin JC, Ramaekers FC, Hopman AH (1994) Optimal preparation of preimplantation embryo interphase nuclei for analysis by fluorescence in-situ hybridization. Hum Reprod 9:533–537

    PubMed  CAS  Google Scholar 

  96. Bahce M, Escudero T, Sandalinas M, Morrison L, Legator M, Munne S (2000) Improvements of preimplantation diagnosis of aneuploidy by using microwave hybridization, cell recycling and monocolour labelling of probes. Mol Hum Reprod 6:849–854

    Article  PubMed  CAS  Google Scholar 

  97. Munne S, Marquez C, Magli C, Morton P, Morrison L (1998) Scoring criteria for preimplantation genetic diagnosis of numerical abnormalities for chromosomes X, Y, 13, 16, 18 and 21. Mol Hum Reprod 4:863–870

    Article  PubMed  CAS  Google Scholar 

  98. Stephenson EL, Braude PR, Mason C (2007) International community consensus standard for reporting derivation of human embryonic stem cell lines. Regen Med 2:349–362

    Article  PubMed  Google Scholar 

  99. Chen AE, Egli D, Niakan K, Deng J, Akutsu H, Yamaki M, Cowan C, Fitz-Gerald C, Zhang K, Melton DA, Eggan K (2009) Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines. Cell Stem Cell 4:103–106

    Article  PubMed  CAS  Google Scholar 

  100. Kim HS, Oh SK, Park YB, Ahn HJ, Sung KC, Kang MJ, Lee LA, Suh CS, Kim SH, Kim DW, Moon SY (2005) Methods for derivation of human embryonic stem cells. Stem Cells 23:1228–1233

    Article  PubMed  Google Scholar 

  101. Kim SJ, Lee JE, Park JH, Lee JB, Kim JM, Yoon BS, Song JM, Roh SI, Kim CG, Yoon HS (2005) Efficient derivation of new human embryonic stem cell lines. Mol Cells 19:46–53

    PubMed  CAS  Google Scholar 

  102. Navara CS, Redinger C, Mich-Basso J, Oliver S, Ben-Yehudah A, Castro C, Simerly C (2007) Derivation and characterization of nonhuman primate embryonic stem cells. Curr Protoc Stem Cell Biol Chapter 1, Unit 1A 1

    Google Scholar 

Download references

Acknowledgments

The authors thank the laboratory technicians and embryologists of the Racine IVF lab, Tamar Shwartz, Ariela Carmon, Tanya Cohen, Nava Mei-Raz, Veronica Gold, and Sagit Peleg, for their skillful assistance. We thank Sigalit Siso (TASMC) for the graphics and Sheila Ben-Yehudah for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalit Ben-Yosef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ben-Yehudah, A., Malcov, M., Frumkin, T., Ben-Yosef, D. (2012). Mutated Human Embryonic Stem Cells for the Study of Human Genetic Disorders. In: Turksen, K. (eds) Human Embryonic Stem Cells Handbook. Methods in Molecular Biology, vol 873. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-794-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-794-1_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-793-4

  • Online ISBN: 978-1-61779-794-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics