Skip to main content
Log in

High-efficiency derivation of human embryonic stem cell lines following pre-implantation genetic diagnosis

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Pre-implantation genetic diagnosis allows the characterisation of embryos that carry a gene responsible for a severe monogenic disease and to transfer to the mother’s uterus only the unaffected one(s). The genetically affected embryos can be used to establish human embryonic stem cell (hESC) lines. We are currently establishing a cell bank of ESC lines carrying specific disease-causing mutant genes. These cell lines are available to the scientific community. For this purpose, we have designed a technique that requires only minimal manipulation of the embryos. At the blastocyst stage, we just removed the zona pellucida before seeding the embryo as a whole on a layer of feeder cells. This approach gave a good success rate (>20%), whatever the quality of the embryos, and allowed us to derive 11 new hESC lines, representing seven different pathologies. Full phenotypic validation of the cell lines according to ISCI guidelines confirmed their pluripotent nature, as they were positive for hESC markers and able to differentiate in vitro in all three germ layers derivatives. Nine out of 11 stem cell lines had normal karyotypes. Our results indicate that inner cell mass isolation is not mandatory for hESC derivation and that minimal manipulation of embryos can lead to high success rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Baart E. B.; van den Berg I.; Martini E.; Eussen H. J.; Fauser B. C.; Van Opstal D. FISH analysis of 15 chromosomes in human day 4 and 5 preimplantation embryos: the added value of extended aneuploidy detection. Prenat Diagn 27: 55–63; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Baker D. E.; Harrison N. J.; Maltby E.; Smith K.; Moore H. D.; Shaw P. J.; Heath P. R.; Holden H.; Andrews P. W. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 25: 207–215; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Chen A. E.; Egli D.; Niakan K.; Deng J.; Akutsu H.; Yamaki M.; Cowan C.; Fitz-Gerald C.; Zhang K.; Melton D. A.; Eggan K. Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines. Cell Stem Cell 4: 103–106; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Cowan C. A.; Klimanskaya I.; McMahon J.; Atienza J.; Witmyer J.; Zucker J. P.; Wang S.; Morton C. C.; McMahon A. P.; Powers D.; Melton D. A. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350: 1353–1356; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Evans M. J.; Kaufman M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156; 1981.

    Google Scholar 

  • Gardner D. K.; Lane M.; Stevens J.; Schlenker T.; Schoolcraft W. B. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril 73: 1155–1158; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Hardarson T.; Caisander G.; Sjogren A.; Hanson C.; Hamberger L.; Lundin K. A morphological and chromosomal study of blastocysts developing from morphologically suboptimal human pre-embryos compared with control blastocysts. Hum Reprod 18: 399–407; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Heins N.; Englund M. C.; Sjoblom C.; Dahl U.; Tonning A.; Bergh C.; Lindahl A.; Hanson C.; Semb H. Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells 22: 367–376; 2004.

    Article  PubMed  Google Scholar 

  • Lerou P. H.; Yabuuchi A.; Huo H.; Takeuchi A.; Shea J.; Cimini T.; Ince T. A.; Ginsburg E.; Racowsky C.; Daley G. Q. Human embryonic stem cell derivation from poor-quality embryos. Nat Biotechnol 26: 212–214; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Lins A. M.; Micka K. A. Sprecher C. J.; Taylor J. A.; Bacher J. W.; Rabbach D. R.; Bever R. A.; Creacy S. D.; Schumm W. J. Development and population study of an eight-locus short tandem repeat (STR) multiplex system. J Forensic Sci 43:1168–1180; 1998.

    Google Scholar 

  • Ludwig T. E.; Levenstein M. E.; Jones J. M.; Berggren W. T.; Mitchen E. R.; Frane J. L.; Crandall L. J.; Daigh C. A.; Conard K. R.; Piekarczyk M. S. et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24: 185–187; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Mateizel I.; De Temmerman N.; Ullmann U.; Cauffman G.; Sermon K.; Van de Velde H.; De Rycke M.; Degreef E.; Devroey P.; Liebaers I.; Van Steirteghem A. Derivation of human embryonic stem cell lines from embryos obtained after IVF and after PGD for monogenic disorders. Hum Reprod 21: 503–511; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Moutou C.; Gardes N.; Viville S. Multiplex PCR combining deltaF508 mutation and intragenic microsatellites of the CFTR gene for pre-implantation genetic diagnosis (PGD) of cystic fibrosis. Eur J Hum Genet 10: 231–238; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Reubinoff B. E.; Pera M. F.; Fong C. Y.; Trounson A.; Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18: 399–404; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Schatten G.; Smith J.; Navara C.; Park J. H.; Pedersen R. Culture of human embryonic stem cells. Nat Methods 2:455–463; 2005.

    Google Scholar 

  • Strom S.; Inzunza J.; Grinnemo K. H.; Holmberg K.; Matilainen E.; Stromberg A. M.; Blennow E.; Hovatta O. Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines. Hum Reprod 22: 3051–3058; 2007.

    Article  PubMed  Google Scholar 

  • Takahashi K.; Tanabe K.; Ohnuki M.; Narita M.; Ichisaka T.; Tomoda K.; Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Thomson J. A.; Itskovitz-Eldor J.; Shapiro S. S.; Waknitz M. A.; Swiergiel J. J.; Marshall V. S.; Jones J. M. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147; 1998.

    Article  CAS  PubMed  Google Scholar 

  • Turetsky T.; Aizenman E.; Gil Y.; Weinberg N.; Shufaro Y.; Revel A.; Laufer N.; Simon A.; Abeliovich D.; Reubinoff B. E. Laser-assisted derivation of human embryonic stem cell lines from IVF embryos after preimplantation genetic diagnosis. Hum Reprod 23: 46–53; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Van de Velde H.; Cauffman G.; Tournaye H.; Devroey P.; Liebaers I. The four blastomeres of a 4-cell stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Hum Reprod 23: 1742–1747; 2008.

    Article  PubMed  Google Scholar 

  • Van Steirteghem A. C.; Nagy Z.; Joris H.; Liu J.; Staessen C.; Smitz J.; Wisanto A.; Devroey P. High fertilization and implantation rates after intracytoplasmic sperm injection [see comments]. Hum Reprod 8: 1061–1066; 1993.

    PubMed  Google Scholar 

  • Wittemer C.; Ohl J.; Bettahar-Lebugle K.; Viville S.; Nisand I. A quantitative and morphological analysis of oocytes collected during 438 IVF cycles. J Assist Reprod Genet 17: 44–50; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Yu J.; Vodyanik M. A.; Smuga-Otto K.; Antosiewicz-Bourget J.; Frane J. L.; Tian S.; Nie J.; Jonsdottir G. A.; Ruotti V.; Stewart R. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917–1920; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Zeng X.; Miura T.; Luo Y.; Bhattacharya B.; Condie B.; Chen J.; Ginis I.; Lyons I.; Mejido J.; Puri R. K. et al. Properties of pluripotent human embryonic stem cells BG01 and BG02. Stem Cells 22: 292–312; 2004.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Nicolas Becker, Nathalie Gardes and Jean Christophe Nicod for their technical help and the IVF team at the SIHCUS-CMCO. We also would like to thank Bruno Costes for his precious help with the STR genotyping and Xavier Nissan for the TLDA analysis. This work was supported by grants from the Association Française contre les Myopathies (AFM), the Agence Nationale pour la Recherche (ANR, hESCREEN), Medicen Paris Region (IngeCell network), the Centre National de la Recherche Scientifique (CNRS) and the Institut National de la Santé et de la Recherche Médicale (INSERM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Viville.

Additional information

Editor: P. Andrews

P. Tropel and J. Tournois contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tropel, P., Tournois, J., Côme, J. et al. High-efficiency derivation of human embryonic stem cell lines following pre-implantation genetic diagnosis. In Vitro Cell.Dev.Biol.-Animal 46, 376–385 (2010). https://doi.org/10.1007/s11626-010-9300-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-010-9300-8

Keywords

Navigation