Skip to main content

Closed Ampoule Isothermal Microcalorimetry for Continuous Real-Time Detection and Evaluation of Cultured Mammalian Cell Activity and Responses

  • Protocol
  • First Online:
Mammalian Cell Viability

Part of the book series: Methods in Molecular Biology ((MIMB,volume 740))

Abstract

Closed ampoule isothermal microcalorimetry (IMC) is a simple, powerful, nondestructive, and convenient technique that allows continuous, real-time detection and evaluation of cultured cell activity and responses. At a selected set temperature, IMC measures the heat flow between a sample and a heat sink and compares it to the heat-flow between a thermally inactive reference and the heat sink. Since heat flow rates are proportional to the rates of chemical reactions and changes of state, IMC provides a means for dynamically following these processes in any type of specimen – including ones containing cultured cells. The ability of IMC instruments to provide measurements in the microwatt (μJ/s) range allows one to detect and follow the activity (including replication) of low numbers of cells in culture (ca. 103–105, depending on cell type). Closed ampoule IMC is increasingly being used in medical and environmental sciences. While a closed ampoule imposes limitations, it conversely provides simplicity and excellent control. Also, it is still usually possible with closed ampoules to follow mammalian cell activity and replication for several days. This chapter provides an overview of IMC measurement principles and provides examples of the use of IMC for evaluating cultured human and other mammalian cell activity and responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lavoisier A. and Laplace P.-S. (1780) Mémoire sur la chaleur, 355 pp. Académie des Sciences, Paris.

    Google Scholar 

  2. Wadsö I. (2001) Isothermal Microcalorimetry: Current problems and prospects. Journal of Thermal Analysis and Calorimetry 64, 75–84.

    Article  Google Scholar 

  3. Sabbah R., Xu-wu A., Chickos J.S., Planas Leitão M.L., Roux M.V. and Torres L.A. (1999) Reference materials for calorimetry and differential thermal analysis: Thermochimica Acta, 331, 93–204.

    Google Scholar 

  4. Wadsö I. and Goldberg R.N. (2001) Standards in isothermal calorimetry. Pure Appl. Chem 73, 1625–1639, calorimetry and differential thermal analysis. Thermochimica Acta 331, 93–204.

    Google Scholar 

  5. van Herwaarden S. (2000) Calorimetry measurement. In: Mechanical Variables Measurement (Webster J. G., Ed.), pp. 17.11–17–16. CRC Press, Boca Raton.

    Google Scholar 

  6. Wadsö I. (2002) Isothermal microcalorimetry in applied biology. Thermochimica Acta 394, 305–311.

    Article  Google Scholar 

  7. Braissant O., Wirz D., Goepfert B. and Daniels A. U. (2009 - in press) Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiology Letters.

    Google Scholar 

  8. Wadsö I. (2009) Characterization of microbial activity in soil by use of isothermal microcalorimetry. Journal of Thermal Analysis and Calorimetry 95, 843–850.

    Article  Google Scholar 

  9. von Ah U., Wirz D. and Daniels A. U. (2009) Isothermal micro calorimetry – a new method for MIC determinations: results for 12 antibiotics and reference strains of E. coli and S. aureus. BMC Microbiology 9, 106.

    Google Scholar 

  10. Xi L., Yi L., Jun W., Huigang L. and Q, S. (2002) Microcalorimetric study of Staphylococcus aureus growth affected by selenium compounds. Thermochimica Acta 387, 57–61.

    Article  Google Scholar 

  11. Yang L.N., Xu F., Sun X.N., Zhao Z.B. and Song G.C. (2008) Microcalorimetric studies on the action of different cephalosporins. Journal of Thermal Analysis and Calorimetry 93, 417–421.

    Article  CAS  Google Scholar 

  12. Tan A.-M. and Lu J.-H. (1999) Microcalorimetric study of antiviral effect of drug. J. Biochem. Biophys. Methods 38, 225–228.

    Article  PubMed  CAS  Google Scholar 

  13. Heng Z., Congyi Z., Cunxin W., Jibin W., Chaojiang G., Jie L. and Yuwen L. (2005) Microcalorimetric study of virus infection: The effects of hyperthermia and a 1b recombinant homo interferon on the infection process of BHK-21 cells by foot and mouth disease virus. Journal of Thermal Analysis and Calorimetry 79, 45–50. (30)

    Google Scholar 

  14. An-Min T., Chang-Li X., Song-Chen Q., Ping K. and Yu G. (1996) Microcalorimetric study of mitochondria from fish liver tissue isolated. J. Biochem. Biophys. Methods 31, 189–193.

    Article  Google Scholar 

  15. Monti M. (1987) In vitro thermal studies of blood cells. In: Thermal and Energetic Studies of Cellular Biological Systems (M.A., James., Ed.), Vol. pp. Wright, Bristol.

    Google Scholar 

  16. Monti M., Brandt L., Ikomi-Kumm J., Losson H. (1990) Heat production rate in blood lymphocytes as a prognostic factor in non-Hodgkin’s lymphoma. European J. Haematology 4, 25–254.

    Google Scholar 

  17. Kemp R.B. and Guan Y.H. (1997) Heat flux and the calorimetric-respirometric ratio as measures of catabolic flux in mammalian cells. Thermochimica Acta 300, 199–211.

    Article  CAS  Google Scholar 

  18. Boettcher H., Nittinger J., Engel S. and Fiirst P. (1991) Thermogenesis of white adipocytes: a novel method allowing long-term microcalorimetric investigations. J. Biochemical and Biophysical Methods 23, 181–187.

    Article  CAS  Google Scholar 

  19. Boettcher H., Engel S. and Furst P. (1992) Thermogenesis and metabolism of human white adipocytes in gel culture. Clinical Nutrition 11, 53–55. (2) Bataillard P. (1993) Calorimetric sensing in bioanalytical chemistry: principles, applications and trends. Trends in Analytical Chemistry 12, 387–394.

    Google Scholar 

  20. Soerbis R., Monti M., Nilsson-Ehle P. and Wadsö I. (1982) Heat production by adipocytes from obese subjects before and after weight reduction. Metabolism 31, 973–979.

    Article  Google Scholar 

  21. West G.B., Woodruff W.H. and Brown J.H. (2002) Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. PNAS 99, 2473–2478.

    Article  PubMed  Google Scholar 

  22. Kallerhoff M., Karnebogen M., Singer D., Dettenbaeh A., Gralher U. and Ringert R.-H. (1996) Microcalorimetric measurements carried out on isolated tumorous and nontumorous tissue samples from organs in the urogenital tract in comparison to histological and impulse-cytophotometric investigations. Urological Research 24, 83–91.

    Article  PubMed  CAS  Google Scholar 

  23. Lamprecht I. (2003) Calorimetry and thermodynamics of living systems. Thermochimica Acta 405, 1–13.

    Article  CAS  Google Scholar 

  24. Jespersen N.D. (1982) Biochemical and clinical applications of thermometric and thermal analysis, pp. Elsevier Scientific Publishing Company, Amsterdam.

    Google Scholar 

  25. Levin K. (1971) Heat production by leucocytes and thrombocytes measured with a flow microcalorimeter in normal man and during thyroid dysfunction. Clinica Chimica Acta 32, 87–94.

    Article  CAS  Google Scholar 

  26. von Rege H. and Sand W. (1998) Evaluation of biocide efficacy by microcalorimetric determination of microbial activity in biofilms. Journal of Microbiological Methods 33, 227–235.

    Article  Google Scholar 

  27. Lewis G. and Daniels A. U. (2003) Use of Isothermal Heat-Conduction Microcal-orimetry (IHCMC) for the Evaluation of Synthetic Biomaterials. J. Biomedical Materials Research 66B, 487–501.

    Article  CAS  Google Scholar 

  28. Torres F.E., Kuhn P., De Bruyker D., Bell A.G., Wolkin M.V., Peeters E., Williamson J.R., Anderson G.B., Schmitz G.P., Recht M.I., Schweizer S., Scott L.G., Ho J.H., Elrod S.A., Sch ultz P.G., Lerner R.A. and Bruce R.H. (2004) Enthalpy arrays. PNAS 101, 9517–9522.

    Article  PubMed  CAS  Google Scholar 

  29. Recht M.I., De Bruyker D., Bell A.G., Wolkin M.V., Peeters E., Anderson G.B., Kolatkar A.R., Bern M.W., Kuhn P., Bruce R.H. and Torres F.E. (2008) Enthalpy array analysis of enzymatic and binding reactions. Analytical Biochemistry 377, 33–39.

    Article  PubMed  CAS  Google Scholar 

  30. van Herwaarden S. (2005) Overview of calorimeter chip for various applications. The rmochimica Acta 432, 192–201.

    Article  Google Scholar 

  31. Bataillard P. (1993) Calorimetric sensing in bioanalytical chemistry: principles, applications and trends. Trends in Analytical Chemistry 12, 387–394.

    Article  CAS  Google Scholar 

  32. Murigande C., Regenass S., Wirz D., Daniels A.U. and Tyndall (2009) A Comparison Between (3H)-thymidine Incorporation and Isothermal Microcalorimetry for the Assessment of Antigen-induced Lymphocyte Proliferation. Immunological Investigations 38, 67–75.

    Article  PubMed  CAS  Google Scholar 

  33. Monti M. and Wadsö I. (1976) Microcal-orimetric Measurements of Heat Production in Human Erythrocytes: IV. Comparison between Different Calorimetric Techniques, Suspension Media, and Preparation Methods. Scandinavian Journal of Clinical & Laboratory Investigation 36(6), 573–580.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alma U. “Dan” Daniels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Braissant, O., Daniels, A.U.“. (2011). Closed Ampoule Isothermal Microcalorimetry for Continuous Real-Time Detection and Evaluation of Cultured Mammalian Cell Activity and Responses. In: Stoddart, M. (eds) Mammalian Cell Viability. Methods in Molecular Biology, vol 740. Humana Press. https://doi.org/10.1007/978-1-61779-108-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-108-6_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-107-9

  • Online ISBN: 978-1-61779-108-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics