Skip to main content
Log in

Characterization of microbial activity in soil by use of isothermal microcalorimetry

  • The Kyoto Protocol and The Calorimetric Methods
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Isothermal microcalorimetry is now established as a useful technique for the characterization of the microbial activity in soil. A brief summary of publications from this field and of instruments used in such work is presented. Several experimental parameters that can form important sources for systematic errors are discussed and it is suggested that further method work is made in this area. In most isothermal microcalorimetric investigations on the microbial activity in soil, the samples are amended with glucose. It is proposed that cellulose also will be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Barros, J. Salgado and S. Feijo, J. Therm. Anal. Cal., 458 (2008) 11.

    Google Scholar 

  2. I. Wadsö and R. Goldberg, Pure Appl. Chem., 73 (2001) 1625.

    Article  Google Scholar 

  3. J. P. E. Anderson and K. H. Domsch, Arch. Mikrobiol., 93 (1973) 113.

    Article  CAS  Google Scholar 

  4. I. Wadsö, Chem. Soc. Rev., (1997) 79.

  5. T. Matsuo in M. Sorai, Eds, Comprehensive Handbook of Calorimetry and Thermal Analysis, Wiley, New York 2004.

    Google Scholar 

  6. I. Wadsö and L. Wadsö, J. Therm. Anal. Cal., 82 (2005) 553.

    Article  CAS  Google Scholar 

  7. P. Johansson and I. Wadsö, Thermochim. Acta, 342 (1999) 19.

    Article  CAS  Google Scholar 

  8. G. P. Sparling, Soil Biol. Biochem., 13 (1981) 93.

    Article  CAS  Google Scholar 

  9. J. Lerchner, T. Maskow and G. Wolf, Chem. Eng. Proc., 47 (2008) 9.

    Google Scholar 

  10. J. Suurkusk and I Wadsö, Chemica Scripta, 20 (1982) 155.

    Google Scholar 

  11. T. Kawabata, T. H. Yamano and K. Takahashi, Agric. Biol. Chem., 47 (1983) 1281.

    CAS  Google Scholar 

  12. K. Takahashi, Bokin Bobai, 24 (1996) 24.

    Google Scholar 

  13. K. Koga, Y. Suehiro, S.-H. Matsuoka and K. Takahashi, J. Biosci. Bioeng., 95 (2003) 429.

    CAS  Google Scholar 

  14. X.-M. Rong, Q.-Y. Huang, D.-H. Jiang, P. Cai and W. Liang, Pedosphere, 17 (2007) 137.

    Article  CAS  Google Scholar 

  15. F. H. Hesselink van Suchtelen, Arch. Pflanzenbau., 7 (1931) 519.

    Google Scholar 

  16. U. Mortensen, B. Norén and I. Wadsö, Bull. Ecol. Res. Comm. (Stockholm), 17 (1973) 189.

    Google Scholar 

  17. K. Ljungholm, B. Norén, R. Sköld and I. Wadsö, Oikos, 33 (1979) 15.

    Article  Google Scholar 

  18. K. Ljungholm, B. Norén, R. Sköld and I. Wadsö, Oikos, 33 (1979) 24.

    Article  CAS  Google Scholar 

  19. G. P. Sparling, Soil Biol. Biochem., 13 (1981) 93.

    Article  CAS  Google Scholar 

  20. G. P. Sparling, Soil Biol. Biochem., 13 (1981) 373.

    Article  CAS  Google Scholar 

  21. G. P. Sparling, J. Soil Sci., 34 (1983) 381.

    Article  CAS  Google Scholar 

  22. H. Yamano and K. Takahashi, Agric. Biol. Chem., 47 (1983) 1493.

    CAS  Google Scholar 

  23. T. Kimura and K. Takahashi, J. Gen. Microbiol., 131 (1985) 3083.

    CAS  Google Scholar 

  24. T. Konno, Netsu, 3 (1976) 148.

    Google Scholar 

  25. F. Akihiro, U. Masashi, T. Kanamori, O. Naoto and T. Konno, Nippon Dojo Hiryogaku Zasshi, 73 (2002) 733.

    Google Scholar 

  26. F. Akihiro, O. Naoto and T. Konno, Nippon Dojo Hiryogaku Zasshi, 73 (2002) 765.

    Google Scholar 

  27. B. Heilmann, M. Lebuhn and F. Beese, Biol. Fertil. Soils, 19 (1995) 186.

    Article  CAS  Google Scholar 

  28. M. Raubach and F. Beese, Soil. Biol. Biochem., 31 (1999) 949.

    Article  Google Scholar 

  29. T. Vor, J. Dyckmans, H. Flessa and F. Beese, Biol. Fertil. Soil, 36 (2002) 66.

    Article  CAS  Google Scholar 

  30. J. Dyckmans, H. Flessa, A. Lipski, M. Potthoff and F. Beese, J. Plant Nutr. Sci., 169 (2006) 108.

    Article  CAS  Google Scholar 

  31. L. Zelles, I. Scheunert and K. Kreutzer, Biol. Fertil. Soils, 3 (1987) 211.

    Article  CAS  Google Scholar 

  32. K. Drong, I. Lamprecht, C. Motzkus and B. Schaarschmidt, Thermochim. Acta, 193 (1991) 125.

    Article  CAS  Google Scholar 

  33. S. Fradette, D. Rho, R. Samson and A. LeDuy, Appl. Microbiol. Biotechnol., 42 (1994) 432.

    Article  CAS  Google Scholar 

  34. A. Tanco, R. Merckx, R. Schoovaerts and K. Vlassak, Thermochim. Acta, 251 (1995) 21.

    Article  Google Scholar 

  35. H. Teeling and H. Cypionka, Appl. Microbiol. Biotechnol., 48 (1997) 275.

    Article  CAS  Google Scholar 

  36. P. Tissot, J. Therm. Anal. Cal., 57 (1999) 303.

    Article  CAS  Google Scholar 

  37. J. E. Dziejowski, Thermochim. Acta, 251 (1995) 21.

    Article  Google Scholar 

  38. E. Sigstad, M. A. Bejas, M. J. Amoroso and C. I. Garcia, Thermochim. Acta, 394 (2002) 171.

    Article  CAS  Google Scholar 

  39. S. Zheng, J. Yao, B. Zhao and Z. Yu, Eur. J. Soil Biol., 43 (2007) 151.

    Article  CAS  Google Scholar 

  40. A. G. S. Prado and C. Airoldi, Thermochim. Acta, 371 (2001) 169.

    Article  CAS  Google Scholar 

  41. J. Yao, C. Xu, F. Wang, L. Tian, Y. Wang, H. Chen, Z. Yong, M. M. F. Choi, E. Bramanti and T. Maskow, Ecotox., 16 (2007) 503.

    Article  CAS  Google Scholar 

  42. J. Yao, L. Tian, Y. Wang, A. Djah, F. Wang, H. Chen, C. Su, R. Zhuang, Y. Zhou, M. M. F. Choi and E. Bramanti, Ecotox. Environ. Safe., 69 (2008) 289.

    Article  CAS  Google Scholar 

  43. J. A. Rodriguez-Anon, J. Proupin-Castineiras, M. Villanueva-Lopez and O. Nunez-Fernandez, J. Therm. Anal. Cal., 87 (2007) 15.

    Article  CAS  Google Scholar 

  44. L. Nunez-Regueira, N. Barros and I. Barja, J. Thermal Anal., 41 (1994) 1379.

    Article  Google Scholar 

  45. L. Nunez-Regueira, J. A. Rodriguez-Anon, J. Proupin-Castineiras, M. Villanueva-Lopez and O. Nunez-Fernandez, J. Therm. Anal. Cal., 84 (2006) 7.

    Article  CAS  Google Scholar 

  46. N. Barros, I. Gomez-Orellana, S. Feijoo and R. Balsa, Thermochim. Acta, 249 (1995) 161.

    Article  CAS  Google Scholar 

  47. A. G. S. Prado and C. Airoldi, Thermochim. Acta, 332 (1999) 71.

    Article  CAS  Google Scholar 

  48. C. Airoldi and A. G. S. Prado, Thermochim. Acta, 394 (2002) 163.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Wadsö.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wadsö, I. Characterization of microbial activity in soil by use of isothermal microcalorimetry. J Therm Anal Calorim 95, 843–850 (2009). https://doi.org/10.1007/s10973-008-9467-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9467-3

Keywords

Navigation