Skip to main content

Methodological Approaches to Study Histamine Pharmacology in the Kidney: From Cell Culture and Cell Imaging to Functional Assays and Electron Microscopy

  • Protocol
  • First Online:
Histamine Receptors as Drug Targets

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 727 Accesses

Abstract

The best approach to study the complexity of renal pathophysiology is to use living organisms. However, to limit the number of animal experiments undertaken and obtain first in humans results, in vitro models can be extremely helpful options. Moreover, in vitro assays allow us to characterize a new pharmacological target, defining also the selectivity, efficacy, and potency of ligands in a specific cell type. This chapter aims to describe the steps taken to obtain a suitable model to study histamine pharmacology in renal cells, starting from the cell isolation to the morpho-functional assays. The in vitro system herein reported mostly reflects the in vivo situation as demonstrated by our previously published data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharpe CC, Dockrell ME (2012) Primary culture of human renal proximal tubule epithelial cells and interstitial fibroblasts. Methods Mol Biol 806:175–185

    Article  CAS  PubMed  Google Scholar 

  2. Moreland RB (2006) In vitro models: research in physiology and pharmacology of the lower urinary tract. Br J Pharmacol 147(Suppl 2):S56–S61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rosa AC, Grange C, Pini A et al (2013) Overexpression of histamine H(4) receptors in the kidney of diabetic rat. Inflamm Res 62:357–365

    Article  CAS  PubMed  Google Scholar 

  4. Veglia E, Moggio A, Pini A et al (2014) Histamine reduces ZO-1 tight-junction protein expression in human immortalized podocytes. In: Society BP (ed) Pharmacology 2014, London.

    Google Scholar 

  5. Pini A, Chazot PL, Veglia E et al (2015) H3 receptor renal expression in normal and diabetic rats. Inflamm Res 64:271–273

    Article  CAS  PubMed  Google Scholar 

  6. Veglia E, Grange C, Pini A et al (2015) Histamine receptor expression in human renal tubules: a comparative pharmacological evaluation. Inflamm Res 64:261–270

    Article  CAS  PubMed  Google Scholar 

  7. Veglia E, Pini A, Moggio A et al (2015) Histamine affects the glomerular slit diaphragm integrity through H1R. Inflamm Res 64(Suppl1):S41

    Google Scholar 

  8. Al-Awqati Q, Oliver JA (2002) Stem cells in the kidney. Kidney Int 61:387–395

    Article  PubMed  Google Scholar 

  9. Tisher CC, Madsen MK, Verlander JW (1991) Functional morphology of the nephron. In: Hatano M (ed) Nephrology, vol I. Springer Japan, pp 19–38

    Google Scholar 

  10. Stewart KN, Hillis G, Roy-Chaudhury P et al (1995) Integrin distribution in normal kidney and cultured human glomerular cells. Exp Nephrol 3:140–141

    CAS  PubMed  Google Scholar 

  11. Coleman RA, Wu DC, Liu J et al (2000) Expression of aquaporins in the renal connecting tubule. Am J Physiol Renal Physiol 279:F874–F883

    CAS  PubMed  Google Scholar 

  12. Rahmoune H, Thompson PW, Ward JM et al (2005) Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 54:3427–3434

    Article  CAS  PubMed  Google Scholar 

  13. Baer PC, Bereiter-Hahn J, Schubert R et al (2006) Differentiation status of human renal proximal and distal tubular epithelial cells in vitro: Differential expression of characteristic markers. Cells Tissues Organs 184:16–22

    Article  CAS  PubMed  Google Scholar 

  14. Muller T, Myrtek D, Bayer H et al (2006) Functional characterization of histamine receptor subtypes in a human bronchial epithelial cell line. Int J Mol Med 18:925–931

    PubMed  Google Scholar 

  15. Zhai XY, Fenton RA, Andreasen A et al (2007) Aquaporin-1 is not expressed in descending thin limbs of short-loop nephrons. J Am Soc Nephrol 18:2937–2944

    Article  PubMed  Google Scholar 

  16. Jaszai J, Farkas LM, Fargeas CA et al (2010) Prominin-2 is a novel marker of distal tubules and collecting ducts of the human and murine kidney. Histochem Cell Biol 133:527–539

    Article  CAS  PubMed  Google Scholar 

  17. Wilson HM, Stewart KN (2012) Glomerular epithelial and mesangial cell culture and characterization. Methods Mol Biol 806:187–201

    Article  CAS  PubMed  Google Scholar 

  18. Mount DB (2014) Thick ascending limb of the loop of Henle. Clin J Am Soc Nephrol 9:1974–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pan C, Kumar C, Bohl S et al (2009) Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol Cell Proteomics 8:443–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fish AJ, Michael AF, Vernier RL et al (1975) Human glomerular cells in tissue culture. Lab Invest 33:330–341

    CAS  PubMed  Google Scholar 

  21. Holdsworth SR, Glasgow EF, Atkins RC et al (1978) Cell characteristics of cultured glomeruli from different animal species. Nephron 22:454–459

    Article  CAS  PubMed  Google Scholar 

  22. Holdsworth SR, Glasgow EF, Thomson NM et al (1978) Normal human glomerular cells in culture. J Pathol 126:231–237

    Article  CAS  PubMed  Google Scholar 

  23. Foidart JM, Foidart JB, Mahieu PR (1980) Synthesis of collagen and fibronectin by glomerular cells in culture. Ren Physiol 3:183–192

    CAS  PubMed  Google Scholar 

  24. Kreisberg JI, Karnovsky MJ (1983) Glomerular cells in culture. Kidney Int 23:439–447

    Article  CAS  PubMed  Google Scholar 

  25. Krtil J, Platenik J, Kazderova M et al (2007) Culture methods of glomerular podocytes. Kidney Blood Press Res 30:162–174

    Article  CAS  PubMed  Google Scholar 

  26. Mene P, Stoppacciaro A (2009) Isolation and propagation of glomerular mesangial cells. Methods Mol Biol 466:3–17

    CAS  PubMed  Google Scholar 

  27. Striker LJ, Doi T, Elliot S et al (1989) The contribution of glomerular mesangial cells to progressive glomerulosclerosis. Semin Nephrol 9:318–328

    CAS  PubMed  Google Scholar 

  28. Sedor JR, Abboud HE (1984) Actions and metabolism of histamine in glomeruli and tubules of the human kidney. Kidney Int 26:144–152

    Article  CAS  PubMed  Google Scholar 

  29. Scheinman JI, Fish AJ, Brown DM et al (1976) Human glomerular smooth muscle (mesangial) cells in culture. Lab Invest 34:150–158

    CAS  PubMed  Google Scholar 

  30. Ardaillou R (1996) Biology of glomerular cells in culture. Cell Biol Toxicol 12:257–261

    Article  CAS  PubMed  Google Scholar 

  31. Saleem MA, O’Hare MJ, Reiser J et al (2002) A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J Am Soc Nephrol 13:630–638

    CAS  PubMed  Google Scholar 

  32. Camussi G, Turello E, Tetta C et al (1990) Tumor necrosis factor induces contraction of mesangial cells and alters their cytoskeletons. Kidney Int 38:795–802

    Article  CAS  PubMed  Google Scholar 

  33. Doublier S, Ruotsalainen V, Salvidio G et al (2001) Nephrin redistribution on podocytes is a potential mechanism for proteinuria in patients with primary acquired nephrotic syndrome. Am J Pathol 158:1723–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Coppo R, Fonsato V, Balegno S et al (2010) Aberrantly glycosylated IgA1 induces mesangial cells to produce platelet-activating factor that mediates nephrin loss in cultured podocytes. Kidney Int 77:417–427

    Article  CAS  PubMed  Google Scholar 

  35. Soukupova M, Holeckova E (1964) The latent period of explanted organs of newborn, adult and senile rats. Exp Cell Res 33:361–367

    Article  CAS  PubMed  Google Scholar 

  36. Striker GE, Striker LJ (1985) Glomerular cell culture. Lab Invest 53:122–131

    CAS  PubMed  Google Scholar 

  37. Akis N, Madaio MP (2004) Isolation, culture, and characterization of endothelial cells from mouse glomeruli. Kidney Int 65:2223–2227

    Article  CAS  PubMed  Google Scholar 

  38. Takemoto M, Asker N, Gerhardt H et al (2002) A new method for large scale isolation of kidney glomeruli from mice. Am J Pathol 161:799–805

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shankland SJ, Pippin JW, Reiser J et al (2007) Podocytes in culture: past, present, and future. Kidney Int 72:26–36

    Article  CAS  PubMed  Google Scholar 

  40. Murakami A, Oshiro H, Kanzaki S et al (2010) A novel method for isolating podocytes using magnetic activated cell sorting. Nephrol Dial Transplant 25:3884–3890

    Article  CAS  PubMed  Google Scholar 

  41. Pavenstadt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83:253–307

    Article  CAS  PubMed  Google Scholar 

  42. Mundel P, Reiser J, Kriz W (1997) Induction of differentiation in cultured rat and human podocytes. J Am Soc Nephrol 8:697–705

    CAS  PubMed  Google Scholar 

  43. Delarue F, Virone A, Hagege J et al (1991) Stable cell line of T-SV40 immortalized human glomerular visceral epithelial cells. Kidney Int 40:906–912

    Article  CAS  PubMed  Google Scholar 

  44. Ardaillou N, Lelongt B, Turner N et al (1992) Characterization of a simian virus 40-transformed human podocyte cell line producing type IV collagen and exhibiting polarized response to atrial natriuretic peptide. J Cell Physiol 152:599–616

    Article  CAS  PubMed  Google Scholar 

  45. Rosa AC, Rattazzi L, Miglio G et al (2012) Angiotensin II induces tumor necrosis factor-alpha expression and release from cultured human podocytes. Inflamm Res 61:311–317

    Article  CAS  PubMed  Google Scholar 

  46. Taub ML, Yang IS, Wang Y (1989) Primary rabbit kidney proximal tubule cell cultures maintain differentiated functions when cultured in a hormonally defined serum-free medium. In Vitro Cell Dev Biol 25:770–775

    Article  CAS  PubMed  Google Scholar 

  47. Yang AH, Gould-Kostka J, Oberley TD (1987) In vitro growth and differentiation of human kidney tubular cells on a basement membrane substrate. In Vitro Cell Dev Biol 23:34–46

    Article  CAS  PubMed  Google Scholar 

  48. Heidrich HG, Dew ME (1977) Homogeneous cell populations from rabbit kidney cortex. Proximal, distal tubule, and renin-active cell isolated by free-flow electrophoresis. J Cell Biol 74:780–788

    Article  CAS  PubMed  Google Scholar 

  49. Hammond TG (1992) Analysis and isolation of renal tubular cells by flow cytometry. Kidney Int 42:997–1005

    Article  CAS  PubMed  Google Scholar 

  50. Stanton RC, Mendrick DL, Rennke HG et al (1986) Use of monoclonal antibodies to culture rat proximal tubule cells. Am J Physiol 251:C780–C786

    CAS  PubMed  Google Scholar 

  51. Wilson PD, Dillingham MA, Breckon R et al (1985) Defined human renal tubular epithelia in culture: growth, characterization, and hormonal response. Am J Physiol 248(3 Pt 2):F436–F443

    CAS  PubMed  Google Scholar 

  52. Racusen LC, Monteil C, Sgrignoli A et al (1997) Cell lines with extended in vitro growth potential from human renal proximal tubule: characterization, response to inducers, and comparison with established cell lines. J Lab Clin Med 129:318–329

    Article  CAS  PubMed  Google Scholar 

  53. Ryan MJ, Johnson G, Kirk J et al (1994) HK-2: an immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int 45:48–57

    Article  CAS  PubMed  Google Scholar 

  54. Kenakin T (2003) Predicting therapeutic value in the lead optimization phase of drug discovery. Nat Rev Drug Discov 2:429–438

    Article  CAS  PubMed  Google Scholar 

  55. Abdolzade-Bavil A, Hayes S, Goretzki L et al (2004) Convenient and versatile subcellular extraction procedure, that facilitates classical protein expression profiling and functional protein analysis. Proteomics 4:1397–1405

    Article  CAS  PubMed  Google Scholar 

  56. Cox B, Emili A (2006) Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics. Nat Protoc 1:1872–1878

    Article  CAS  PubMed  Google Scholar 

  57. Murray CI, Barrett M, Van Eyk JE (2009) Assessment of ProteoExtract subcellular fractionation kit reveals limited and incomplete enrichment of nuclear subproteome from frozen liver and heart tissue. Proteomics 9:3934–3938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Burry RW (2011) Controls for immunocytochemistry: an update. J Histochem Cytochem 59:6–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Coons AH, Chreech HJ, Jones RN et al (1942) The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J Immunol 45:159–170

    CAS  Google Scholar 

  60. Odell ID, Cook D (2013) Immunofluorescence techniques. J Invest Dermatol 133:e4

    Article  CAS  PubMed  Google Scholar 

  61. Larson JD, Rodgers ML, Hoskins AA (2014) Visualizing cellular machines with colocalization single molecule microscopy. Chem Soc Rev 43:1189–1200

    Article  CAS  PubMed  Google Scholar 

  62. Seifert R, Strasser A, Schneider EH et al (2013) Molecular and cellular analysis of human histamine receptor subtypes. Trends Pharmacol Sci 34:33–58

    Article  CAS  PubMed  Google Scholar 

  63. Seifert R, Schneider EH, Dove S et al (2011) Paradoxical stimulatory effects of the "standard" histamine H4-receptor antagonist JNJ7777120: the H4 receptor joins the club of 7 transmembrane domain receptors exhibiting functional selectivity. Mol Pharmacol 79:631–638

    Article  CAS  PubMed  Google Scholar 

  64. Emami-Nemini A, Roux T, Leblay M et al (2013) Time-resolved fluorescence ligand binding for G protein-coupled receptors. Nat Protoc 8:1307–1320

    Article  PubMed  CAS  Google Scholar 

  65. Cottet M, Faklaris O, Maurel D et al (2012) BRET and time-resolved FRET strategy to study GPCR oligomerization: from cell lines toward native tissues. Front Endocrinol 3:92

    Article  Google Scholar 

  66. Lohse MJ, Nuber S, Hoffmann C (2012) Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 64:299–336

    Article  CAS  PubMed  Google Scholar 

  67. Mathis G (1999) HTRF(R) technology. J Biomol Screen 4:309–314

    Article  CAS  PubMed  Google Scholar 

  68. Bazin H, Trinquet E, Mathis G (2002) Time resolved amplification of cryptate emission: a versatile technology to trace biomolecular interactions. J Biotechnol 82:233–250

    CAS  PubMed  Google Scholar 

  69. Degorce F, Card A, Soh S et al (2009) HTRF: A technology tailored for drug discovery—a review of theoretical aspects and recent applications. Curr Chem Geneomics 3:22–32

    Article  CAS  Google Scholar 

  70. Brown D (2000) Tight junctions: guardians of the paracellular pathway. Kidney Int 57:2652–2653

    Article  CAS  PubMed  Google Scholar 

  71. Denker BM, Sabath E (2011) The biology of epithelial cell tight junctions in the kidney. J Am Soc Nephrol 22:622–625

    Article  CAS  PubMed  Google Scholar 

  72. Benzing T (2004) Signaling at the slit diaphragm. J Am Soc Nephrol 15:1382–1391

    Article  PubMed  Google Scholar 

  73. Takeuchi K, Kishioka C, Ishinaga H et al (2001) Histamine alters gene expression in cultured human nasal epithelial cells. J Allergy Clin Immunol 107:310–314

    Article  CAS  PubMed  Google Scholar 

  74. Wegener J, Seebach J (2014) Experimental tools to monitor the dynamics of endothelial barrier function: a survey of in vitro approaches. Cell Tissue Res 355:485–514

    Article  CAS  PubMed  Google Scholar 

  75. Awad AS, Rouse M, Liu L et al (2008) Activation of adenosine 2A receptors preserves structure and function of podocytes. J Am Soc Nephrol 19:59–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bondeva T, Ruster C, Franke S et al (2009) Advanced glycation end-products suppress neuropilin-1 expression in podocytes. Kidney Int 75:605–616

    Article  CAS  PubMed  Google Scholar 

  77. Jin X, Wang W, Mao J et al (2014) Overexpression of Myo1e in mouse podocytes enhances cellular endocytosis, migration, and adhesion. J Cell Biochem 115:410–419

    Article  CAS  PubMed  Google Scholar 

  78. Li SY, Huang PH, Yang AH et al (2014) Matrix metalloproteinase-9 deficiency attenuates diabetic nephropathy by modulation of podocyte functions and dedifferentiation. Kidney Int 86:358–369

    Article  CAS  PubMed  Google Scholar 

  79. Mundel P, Kriz W (1995) Structure and function of podocytes: an update. Anat Embryol 192:385–397

    Article  CAS  PubMed  Google Scholar 

  80. Shapiro L, Fannon AM, Kwong PD et al (1995) Structural basis of cell-cell adhesion by cadherins. Nature 374:327–337

    Article  CAS  PubMed  Google Scholar 

  81. Yonemura S, Itoh M, Nagafuchi A et al (1995) Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J Cell Sci 108:127–142

    CAS  PubMed  Google Scholar 

  82. Lee DB, Huang E, Ward HJ (2006) Tight junction biology and kidney dysfunction. Am J Physiol Renal Physiol 290:F20–F34

    Article  CAS  PubMed  Google Scholar 

  83. Schnabel E, Anderson JM, Farquhar MG (1990) The tight junction protein ZO-1 is concentrated along slit diaphragms of the glomerular epithelium. J Cell Biol 111:1255–1263

    Article  CAS  PubMed  Google Scholar 

  84. Drumond MC, Deen WM (1995) Hindered transport of macromolecules through a single row of cylinders: application to glomerular filtration. J Biomech Eng 117:414–422

    Article  CAS  PubMed  Google Scholar 

  85. Kestila M, Lenkkeri U, Mannikko M et al (1998) Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell 1:575–582

    Article  CAS  PubMed  Google Scholar 

  86. Reiser J, Kriz W, Kretzler M et al (2000) The glomerular slit diaphragm is a modified adherens junction. J Am Soc Nephrol 11:1–8

    CAS  PubMed  Google Scholar 

  87. Gordon RE (2014) Electron microscopy: a brief history and review of current clinical application. Methods Mol Biol 1180:119–135

    Article  PubMed  Google Scholar 

  88. Gardner TW, Lesher T, Khin S et al (1996) Histamine reduces ZO-1 tight-junction protein expression in cultured retinal microvascular endothelial cells. Biochem J 320:717–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chazot PL, Hann V, Wilson C et al (2001) Immunological identification of the mammalian H3 histamine receptor in the mouse brain. Neuroreport 12:259–262

    Article  CAS  PubMed  Google Scholar 

  90. van Rijn RM, Chazot PL, Shenton FC et al (2006) Oligomerization of recombinant and endogenously expressed human histamine H4receptors. Mol Pharmacol 70:604–615

    Article  PubMed  CAS  Google Scholar 

  91. Cannon KE, Chazot PL, Hann V et al (2007) Immunohistochemical localization of histamine H3 receptors in rodent skin, dorsal root ganglia, superior cervical ganglia, and spinal cord: potential antinociceptive targets. Pain 129:76–92

    Article  CAS  PubMed  Google Scholar 

  92. Dijkstra D, Leurs R, Chazot P et al (2007) Histamine downregulates monocyte CCL2 production through the histamine H4receptor. J Allergy Clin Immunol 120:300–307

    Article  CAS  PubMed  Google Scholar 

  93. Baumer W, Wendorff S, Gutzmer R et al (2008) Histamine H4receptors modulate dendritic cell migration through skin--immunomodulatory role of histamine. Allergy 63:1387–1394

    Article  CAS  PubMed  Google Scholar 

  94. Dijkstra D, Stark H, Chazot PL et al (2008) Human inflammatory dendritic epidermal cells express a functional histamine H4receptor. J Invest Dermatol 128:1696–1703

    Article  CAS  PubMed  Google Scholar 

  95. Grandi D, Shenton FC, Chazot PL et al (2008) Immunolocalization of histamine H3receptors on endocrine cells in the rat gastrointestinal tract. Histol Histopathol 23:789–798

    PubMed  Google Scholar 

  96. Morini G, Becchi G, Shenton FC et al (2008) Histamine H3and H4 receptors are expressed on distinct endocrine cell types in the rat fundic mucosa. Inflamm Res 57:S57–S58

    Article  CAS  PubMed  Google Scholar 

  97. van Rijn RM, van Marle A, Chazot PL et al (2008) Cloning and characterization of dominant negative splice variants of the human histamine H4 receptor. Biochem J 414:121–131

    Article  PubMed  CAS  Google Scholar 

  98. Oliveira Arcolino F, Tort Piella A, Papadimitriou E et al (2015) Human urine as a noninvasive source of kidney cells. Stem Cells Int 2015:362562

    Article  PubMed  PubMed Central  Google Scholar 

  99. Erdmann B, Fuxe K, Ganten D (1996) Subcellular localization of angiotensin II immunoreactivity in the rat cerebellar cortex. Hypertension 28:818–824

    Article  CAS  PubMed  Google Scholar 

  100. Matter K, Balda MS (2003) Functional analysis of tight junctions. Methods 30:228–234

    Article  CAS  PubMed  Google Scholar 

  101. Macconi D, Abbate M, Morigi M et al (2006) Permselective dysfunction of podocyte-podocyte contact upon angiotensin II unravels the molecular target for renoprotective intervention. Am J Pathol 168:1073–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gilbert SF, Migeon BR (1975) D-valine as a selective agent for normal human and rodent epithelial cells in culture. Cell 5:11–17

    Article  CAS  PubMed  Google Scholar 

  103. Kreisberg JI, Venkatachalam M, Troyer D (1985) Contractile properties of cultured glomerular mesangial cells. Am J Physiol 249:F457–F463

    CAS  PubMed  Google Scholar 

  104. Biancone L, Tetta C, Turello E et al (1992) Platelet-activating factor biosynthesis by cultured mesangial cells is modulated by proteinase inhibitors. J Am Soc Nephrol 2:1251–1261

    CAS  PubMed  Google Scholar 

  105. Davies M (1994) The mesangial cell: a tissue culture view. Kidney Int 45:320–327

    Article  CAS  PubMed  Google Scholar 

  106. Moutabarrik A, Nakanishi I, Zaid D et al (1994) Interleukin-1-beta activation of cultured glomerular epithelial cells. Exp Nephrol 2:196–204

    CAS  PubMed  Google Scholar 

  107. Ausiello DA, Kreisberg JI, Roy C et al (1980) Contraction of cultured rat glomerular cells of apparent mesangial origin after stimulation with angiotensin II and arginine vasopressin. J Clin Invest 65:754–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Singhal PC, Scharschmidt LA, Gibbons N et al (1986) Contraction and relaxation of cultured mesangial cells on a silicone rubber surface. Kidney Int 30:862–873

    Article  CAS  PubMed  Google Scholar 

  109. Biancone L, David S, Della Pietra V et al (1994) Alternative pathway activation of complement by cultured human proximal tubular epithelial cells. Kidney Int 45:451–460

    Article  CAS  PubMed  Google Scholar 

  110. Coers W, Huitema S, van der Horst ML et al (1994) Puromycin aminonucleoside and adriamycin disturb cytoskeletal and extracellular matrix protein organization, but not protein synthesis of cultured glomerular epithelial cells. Exp Nephrol 2:40–50

    CAS  PubMed  Google Scholar 

  111. Conaldi PG, Biancone L, Bottelli A et al (1997) Distinct pathogenic effects of group B coxsackieviruses on human glomerular and tubular kidney cells. J Virol 71:9180–9187

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Detrisac CJ, Sens MA, Garvin AJ et al (1984) Tissue culture of human kidney epithelial cells of proximal tubule origin. Kidney Int 25:383–390

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arianna Carolina Rosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Pini, A., Veglia, E., Grange, C., Rosa, A.C. (2017). Methodological Approaches to Study Histamine Pharmacology in the Kidney: From Cell Culture and Cell Imaging to Functional Assays and Electron Microscopy. In: Tiligada, E., Ennis, M. (eds) Histamine Receptors as Drug Targets. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6843-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6843-5_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6841-1

  • Online ISBN: 978-1-4939-6843-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics