Skip to main content

Advertisement

Log in

Experimental tools to monitor the dynamics of endothelial barrier function: a survey of in vitro approaches

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Endothelial cells line the inner surface of all blood vessels and constitute a selective barrier between blood and tissue. Permeation of solutes across the endothelial cell monolayer occurs either paracellularly through specialized endothelial cell-cell junctions or transcellularly via special transport mechanisms including transcytosis, via the formation of transcellular channels, or by cell membrane transport proteins. Several in vitro assays have been developed in the past few decades to analyze the molecular mechanisms of transendothelial permeability. Measurement of the electrical resistance of the cell monolayer has proven to be particularly suitable for analyzing paracellular barrier function with high-time resolution over long time periods. We review the various permeability assays and focus on the electrical impedance analysis of endothelial cell monolayers. We also address current progress in the development of techniques used to investigate endothelial permeability with high-lateral resolution and under mechanical loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aird WC (2007a) Phenotypic heterogeneity of the endothelium. I. Structure, function, and mechanisms. Circ Res 100:158–173

    PubMed  CAS  Google Scholar 

  • Aird WC (2007b) Phenotypic heterogeneity of the endothelium. II. Representative vascular beds. Circ Res 100:174–190

    PubMed  CAS  Google Scholar 

  • Aird WC (2012) Endothelial cell heterogeneity. Cold Spring Harbor Perspect Med 2:a006429

    Google Scholar 

  • Aman J, Bezu J van, Damanafshan A, Huveneers S, Eringa EC, Vogel SM, Groeneveld AB, Vonk Noordegraaf A, Hinsbergh VW van, Nieuw Amerongen GP van (2012) Effective treatment of edema and endothelial barrier dysfunction with imatinib. Circulation 126:2728–2738

  • Anssari-Benam A, Korakianitis T (2013) Atherosclerotic plaques: is endothelial shear stress the only factor? Med Hypotheses 81:235–239

    PubMed  CAS  Google Scholar 

  • Arndt S, Seebach J, Psathaki K, Galla HJ, Wegener J (2004) Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosens Bioelectron 19:583–594

    PubMed  CAS  Google Scholar 

  • Azuma N, Akasaka N, Kito H, Ikeda M, Gahtan V, Sasajima T, Sumpio BE (2001) Role of p38 MAP kinase in endothelial cell alignment induced by fluid shear stress. Am J Physiol Heart Circ Physiol 280:H189–H197

    PubMed  CAS  Google Scholar 

  • Barbee KA, Mundel T, Lal R, Davies PF (1995) Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers. Am J Physiol 268:H1765–H1772

    PubMed  CAS  Google Scholar 

  • Barsoukov E, Macdonald JR (2005) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  • Bates DO (2010) Vascular endothelial growth factors and vascular permeability. Cardiovasc Res 87:262–271

    PubMed Central  PubMed  CAS  Google Scholar 

  • Becker BF, Chappell D, Jacob M (2010) Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol 105:687–701

    PubMed  CAS  Google Scholar 

  • Berardi DE, Tarbell JM (2009) Stretch and shear interactions affect intercellular junction protein expression and turnover in endothelial cells. Cel Mol Bioeng 2:320–331

    CAS  Google Scholar 

  • Bergner S, Vatsyayan P, Matysik FM (2013) Recent advances in high resolution scanning electrochemical microscopy of living cells—a review. Anal Chim Acta 775:1–13

    PubMed  CAS  Google Scholar 

  • Betzen C, White R, Zehendner CM, Pietrowski E, Bender B, Luhmann HJ, Kuhlmann CR (2009) Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium. Free Radic Biol Med 47:1212–1220

    PubMed  CAS  Google Scholar 

  • Bevan HS, Slater SC, Clarke H, Cahill PA, Mathieson PW, Welsh GI, Satchell SC (2011) Acute laminar shear stress reversibly increases human glomerular endothelial cell permeability via activation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol 301:F733–F742

    PubMed Central  PubMed  Google Scholar 

  • Birukov KG, Birukova AA, Dudek SM, Verin AD, Crow MT, Zhan X, DePaola N, Garcia JG (2002) Shear stress-mediated cytoskeletal remodeling and cortactin translocation in pulmonary endothelial cells. Am J Respir Cell Mol Biol 26:453–464

    PubMed  CAS  Google Scholar 

  • Birukov KG, Jacobson JR, Flores AA, Ye SQ, Birukova AA, Verin AD, Garcia JG (2003) Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch. Am J Physiol Lung Cell Mol Physiol 285:L785–L797

    PubMed  CAS  Google Scholar 

  • Birukova AA, Chatchavalvanich S, Rios A, Kawkitinarong K, Garcia JG, Birukov KG (2006) Differential regulation of pulmonary endothelial monolayer integrity by varying degrees of cyclic stretch. Am J Pathol 168:1749–1761

    PubMed Central  PubMed  CAS  Google Scholar 

  • Böcker M, Anczykowski B, Wegener JTS (2007) Scanning ion conductance microscopy with distance-modulated shear force control. Nanotechnology 18:145505

    Google Scholar 

  • Bojarski C, Bendfeldt K, Gitter AH, Mankertz J, Fromm M, Wagner S, Riecken EO, Schulzke JD (2000) Apoptosis and intestinal barrier function. Ann N Y Acad Sci 915:270–274

    PubMed  CAS  Google Scholar 

  • Breslin JW, Kurtz KM (2009) Lymphatic endothelial cells adapt their barrier function in response to changes in shear stress. Lymphat Res Biol 7:229–237

    PubMed Central  PubMed  Google Scholar 

  • Brower JB, Targovnik JH, Caplan MR, Massia SP (2010) High glucose-mediated loss of cell surface heparan sulfate proteoglycan impairs the endothelial shear stress response. Cytoskeleton 67:135–141

    PubMed  CAS  Google Scholar 

  • Buschmann MH, Dieterich P, Adams NA, Schnittler HJ (2005) Analysis of flow in a cone-and-plate apparatus with respect to spatial and temporal effects on endothelial cells. Biotechnol Bioeng 89:493–502

    PubMed  CAS  Google Scholar 

  • Cancel LM, Fitting A, Tarbell JM (2007) In vitro study of LDL transport under pressurized (convective) conditions. Am J Physiol Heart Circ Physiol 293:H126–H132

    PubMed  CAS  Google Scholar 

  • Carpi-Medina P, Whittembury G (1988) Comparison of transcellular and transepithelial water osmotic permeabilities (Pos) in the isolated proximal straight tubule (PST) of the rabbit kidney. Pflugers Arch 412:66–74

    PubMed  CAS  Google Scholar 

  • Chang YS, Yaccino JA, Lakshminarayanan S, Frangos JA, Tarbell JM (2000) Shear-induced increase in hydraulic conductivity in endothelial cells is mediated by a nitric oxide-dependent mechanism. Arterioscler Thromb Vasc Biol 20:35–42

    PubMed  CAS  Google Scholar 

  • Chen XL, Varner SE, Rao AS, Grey JY, Thomas S, Cook CK, Wasserman MA, Medford RM, Jaiswal AK, Kunsch C (2003) Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J Biol Chem 278:703–711

    PubMed  CAS  Google Scholar 

  • Chien S (2008) Effects of disturbed flow on endothelial cells. Ann Biomed Eng 36:554–562

    PubMed Central  PubMed  Google Scholar 

  • Choi CK, English AE, Jun SI, Kihm KD, Rack PD (2007) An endothelial cell compatible biosensor fabricated using optically thin indium tin oxide silicon nitride electrodes. Biosens Bioelectron 22:2585–2590

    PubMed  CAS  Google Scholar 

  • Claude P (1978) Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J Membr Biol 39:219–232

    PubMed  CAS  Google Scholar 

  • Cohen AW, Carbajal JM, Schaeffer RC (1999) VEGF stimulates tyrosine phosphorylation of beta-catenin and small-pore endothelial barrier dysfunction. Am J Physiol Heart Circ Physiol 277:H2038–H2049

    CAS  Google Scholar 

  • Collins NT, Cummins PM, Colgan OC, Ferguson G, Birney YA, Murphy RP, Meade G, Cahill PA (2006) Cyclic strain-mediated regulation of vascular endothelial occludin and ZO-1: influence on intercellular tight junction assembly and function. Arterioscler Thromb Vasc Biol 26:62–68

    PubMed  CAS  Google Scholar 

  • Conway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS, Schwartz MA (2013) Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 23:1024–1030

    PubMed  CAS  Google Scholar 

  • Cucullo L, Hossain M, Puvenna V, Marchi N, Janigro D (2011) The role of shear stress in blood–brain barrier endothelial physiology. BMC Neurosci 12:40

    PubMed Central  PubMed  CAS  Google Scholar 

  • Curtis TM, Tabb J, Romeo L, Schwager SJ, Widder MW, Schalie WH van der (2009a) Improved cell sensitivity and longevity in a rapid impedance-based toxicity sensor. J Appl Toxicol 29:374–380

  • Curtis TM, Widder MW, Brennan LM, Schwager SJ, Schalie WH van der, Fey J, Salazar N (2009b) A portable cell-based impedance sensor for toxicity testing of drinking water. Lab Chip 9:2176–2183

  • Dartsch PC, Betz E (1989) Response of cultured endothelial cells to mechanical stimulation. Basic Res Cardiol 84:268–281

    PubMed  CAS  Google Scholar 

  • Davies PF (1991) Mechanical sensing mechanisms: shear stress and endothelial cells. J Vasc Surg 13:729–731

    PubMed  CAS  Google Scholar 

  • Davies PF (1997) Overview: temporal and spatial relationships in shear stress-mediated endothelial signalling. J Vasc Res 34:208–211

    PubMed  CAS  Google Scholar 

  • Davies PF, Dewey CF Jr, Bussolari SR, Gordon EJ, Gimbrone MA Jr (1984) Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J Clin Invest 73:1121–1129

    PubMed Central  PubMed  CAS  Google Scholar 

  • Davies PF, Remuzzi A, Gordon EJ, Dewey CF Jr, Gimbrone MA Jr (1986) Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci U S A 83:2114–2117

    PubMed Central  PubMed  CAS  Google Scholar 

  • Davies PF, Zilberberg J, Helmke BP (2003) Spatial microstimuli in endothelial mechanosignaling. Circ Res 92:359–370

    PubMed  CAS  Google Scholar 

  • Deen WM, Lazzara MJ, Myers BD (2001) Structural determinants of glomerular permeability. Am J Physiol Renal Physiol 281:F579–F596

    PubMed  CAS  Google Scholar 

  • Dejana E, Orsenigo F (2013) Endothelial adherens junctions at a glance. J Cell Sci 126:2545–2549

    PubMed  CAS  Google Scholar 

  • DeMaio L, Tarbell JM, Scaduto RC Jr, Gardner TW, Antonetti DA (2004) A transmural pressure gradient induces mechanical and biological adaptive responses in endothelial cells. Am J Physiol Heart Circ Physiol 286:H731–H741

    PubMed  CAS  Google Scholar 

  • DePaola N, Phelps JE, Florez L, Keese CR, Minnear FL, Giaever I, Vincent P (2001) Electrical impedance of cultured endothelium under fluid flow. Ann Biomed Eng 29:648–656

    PubMed  CAS  Google Scholar 

  • Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103:177–185

    PubMed  Google Scholar 

  • Dieterich P, Odenthal-Schnittler M, Mrowietz C, Kramer M, Sasse L, Oberleithner H, Schnittler HJ (2000) Quantitative morphodynamics of endothelial cells within confluent cultures in response to fluid shear stress. Biophys J 79:1285–1297

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dimmeler S, Haendeler J, Rippmann V, Nehls M, Zeiher AM (1996) Shear stress inhibits apoptosis of human endothelial cells. FEBS Lett 399:71–74

    PubMed  CAS  Google Scholar 

  • Dubrovskyi O, Birukova AA, Birukov KG (2013) Measurement of local permeability at subcellular level in cell models of agonist- and ventilator-induced lung injury. Lab Invest 93:254–263

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dvorak AM, Feng D (2001) The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. J Histochem Cytochem 49:419–432

    PubMed  CAS  Google Scholar 

  • Emmanuel C, Huynh M, Matthews J, Kelly E, Zoellner H (2013) TNF-alpha and TGF-beta synergistically stimulate elongation of human endothelial cells without transdifferentiation to smooth muscle cell phenotype. Cytokine 61:38–40

    PubMed  CAS  Google Scholar 

  • Erben M, Decker S, Franke H, Galla HJ (1995) Electrical resistance measurements on cerebral capillary endothelial cells—a new technique to study small surface areas. J Biochem Biophys Methods 30:227–238

    PubMed  CAS  Google Scholar 

  • Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W (1998) Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol 140:947–959

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fischbarg J, Lim JJ (1973) Determination of the impedance locus of rabbit corneal endothelium. Biophys J 13:595–599

    PubMed Central  PubMed  CAS  Google Scholar 

  • FitzGerald OM, Hess EV, Chance A, Highsmith RF (1987) Quantitative studies of human monokine-induced endothelial cell elongation. J Leukoc Biol 41:421–428

    PubMed  CAS  Google Scholar 

  • Fordjour AK, Harrington EO (2009) PKCdelta influences p190 phosphorylation and activity: events independent of PKCdelta-mediated regulation of endothelial cell stress fiber and focal adhesion formation and barrier function. Biochim Biophys Acta 1790:1179–1190

    PubMed Central  PubMed  CAS  Google Scholar 

  • Franke RP, Grafe M, Schnittler H, Seiffge D, Mittermayer C, Drenckhahn D (1984) Induction of human vascular endothelial stress fibres by fluid shear stress. Nature 307:648–649

    PubMed  CAS  Google Scholar 

  • Freiesleben-de Blasio B, Wegener J (2006) Impedance spectroscopy. Encyclopedia of medical technologies and instrumentation. Wiley, Chichester

    Google Scholar 

  • Fu BM, Tarbell JM (2013) Mechano-sensing and transduction by endothelial surface glycocalyx: composition, structure, and function. Wiley Interdisc Rev Syst Biol Med 5:381–390

    CAS  Google Scholar 

  • Fujiwara K (2003) Mechanical stresses keep endothelial cells healthy: beneficial effects of a physiological level of cyclic stretch on endothelial barrier function. Am J Physiol Lung Cell Mol Physiol 285:L782–L784

    PubMed  CAS  Google Scholar 

  • Giaever I, Keese CR (1984) Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc Natl Acad Sci U S A 81:3761–3764

    PubMed Central  PubMed  CAS  Google Scholar 

  • Giaever I, Keese CR (1991) Micromotion of mammalian cells measured electrically. Proc Natl Acad Sci U S A 88:7896–7900

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gitter AH, Bertog M, Schulzke J, Fromm M (1997) Measurement of paracellular epithelial conductivity by conductance scanning. Pflugers Arch 434:830–840

    PubMed  CAS  Google Scholar 

  • Gitter AH, Wullstein F, Fromm M, Schulzke JD (2001) Epithelial barrier defects in ulcerative colitis: characterization and quantification by electrophysiological imaging. Gastroenterology 121:1320–1328

    PubMed  CAS  Google Scholar 

  • Gorelik J, Gu Y, Spohr HA, Shevchuk AI, Lab MJ, Harding SE, Edwards CR, Whitaker M, Moss GW, Benton DC, Sanchez D, Darszon A, Vodyanoy I, Klenerman D, Korchev YE (2002) Ion channels in small cells and subcellular structures can be studied with a smart patch-clamp system. Biophys J 83:3296–3303

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gorelik J, Zhang Y, Shevchuk AI, Frolenkov GI, Sanchez D, Lab MJ, Vodyanoy I, Edwards CR, Klenerman D, Korchev YE (2004) The use of scanning ion conductance microscopy to image A6 cells. Mol Cell Endocrinol 217:101–108

    PubMed  CAS  Google Scholar 

  • Grab DJ, Nyarko E, Nikolskaia OV, Kim YV, Dumler JS (2009) Human brain microvascular endothelial cell traversal by Borrelia burgdorferi requires calcium signaling. Clin Microbiol Infect 15:422–426

    PubMed  CAS  Google Scholar 

  • Grabowski EF, Jaffe EA, Weksler BB (1985) Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress. J Lab Clin Med 105:36–43

    PubMed  CAS  Google Scholar 

  • Grimnes S, Martinsen OG (2000) Bioimpedance and bioelectricity basics. Academic Press, Cornwall

    Google Scholar 

  • Gunzel D, Krug SM, Rosenthal R, Fromm M (2010) Biophysical methods to study tight junction permeability. Curr Top Membr 65:39–78

    Google Scholar 

  • Gunzel D, Zakrzewski SS, Schmid T, Pangalos M, Wiedenhoeft J, Blasse C, Ozboda C, Krug SM (2012) From TER to trans- and paracellular resistance: lessons from impedance spectroscopy. Ann N Y Acad Sci 1257:142–151

    PubMed  Google Scholar 

  • Hartmann C, Zozulya A, Wegener J, Galla HJ (2007) The impact of glia-derived extracellular matrices on the barrier function of cerebral endothelial cells: an in vitro study. Exp Cell Res 313:1318–1325

    PubMed  CAS  Google Scholar 

  • Heffernan M, Chance A, Hess EV, Highsmith RF, FitzGerald O (1994) Alterations in human endothelial cell morphology, proliferation and function by a macrophage-derived factor. Irish J Med Sci 163:359–365

    PubMed  CAS  Google Scholar 

  • Hierck BP, Van der Heiden K, Alkemade FE, Van de Pas S, Van Thienen JV, Groenendijk BC, Bax WH, Van der Laarse A, Deruiter MC, Horrevoets AJ, Poelmann RE (2008) Primary cilia sensitize endothelial cells for fluid shear stress. Dev Dyn 237:725–735

    PubMed  CAS  Google Scholar 

  • Hordijk PL, Anthony E, Mul FP, Rientsma R, Oomen LC, Roos D (1999) Vascular-endothelial-cadherin modulates endothelial monolayer permeability. J Cell Sci 112:1915–1923

    PubMed  CAS  Google Scholar 

  • Hu G, Place AT, Minshall RD (2008) Regulation of endothelial permeability by Src kinase signaling: vascular leakage versus transcellular transport of drugs and macromolecules. Chem Biol Interact 171:177–189

    PubMed Central  PubMed  CAS  Google Scholar 

  • Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668

    PubMed  CAS  Google Scholar 

  • Ishida T, Takahashi M, Corson MA, Berk BC (1997) Fluid shear stress-mediated signal transduction: how do endothelial cells transduce mechanical force into biological responses? Ann N Y Acad Sci 811:12–23

    PubMed  CAS  Google Scholar 

  • Jacob M, Chappell D (2013) Reappraising Starling: the physiology of the microcirculation. Curr Opin Crit Care 19:282–289

    PubMed  Google Scholar 

  • Janshoff A, Wegener J, Sieber M, Galla HJ (1996) Double-mode impedance analysis of epithelial cell monolayers cultured on shear wave resonators. Eur Biophys J 25:93–103

    PubMed  CAS  Google Scholar 

  • Jo H, Dull RO, Hollis TM, Tarbell JM (1991) Endothelial albumin permeability is shear dependent, time dependent, and reversible. Am J Physiol 260:H1992–H1996

    PubMed  CAS  Google Scholar 

  • Jovov B, Wills NK, Lewis SA (1991) A spectroscopic method for assessing confluence of epithelial cell cultures. Am J Physiol 261:C1196–C1203

    PubMed  CAS  Google Scholar 

  • Kadohama T, Akasaka N, Nishimura K, Hoshino Y, Sasajima T, Sumpio BE (2006) p38 Mitogen-activated protein kinase activation in endothelial cell is implicated in cell alignment and elongation induced by fluid shear stress. Endothelium 13:43–50

    PubMed  CAS  Google Scholar 

  • Kataoka N, Iwaki K, Hashimoto K, Mochizuki S, Ogasawara Y, Sato M, Tsujioka K, Kajiya F (2002) Measurements of endothelial cell-to-cell and cell-to-substrate gaps and micromechanical properties of endothelial cells during monocyte adhesion. Proc Natl Acad Sci U S A 99:15638–15643

    PubMed Central  PubMed  CAS  Google Scholar 

  • Keese CR, Bhawe K, Wegener J, Giaever I (2002) Real-time impedance assay to follow the invasive activities of metastatic cells in culture. Biotechniques 33:842–850

    PubMed  CAS  Google Scholar 

  • Keese CR, Wegener J, Walker SR, Giaever I (2004) Electrical wound-healing assay for cells in vitro. Proc Natl Acad Sci U S A 101:1554–1559

    PubMed Central  PubMed  CAS  Google Scholar 

  • Keil JM, Liu X, Antonetti DA (2013) Glucocorticoid induction of occludin expression and endothelial barrier requires transcription factor p54 NONO. Invest Ophthalmol Vis Sci 54:4007–4015

    PubMed Central  PubMed  CAS  Google Scholar 

  • Komarova Y, Malik AB (2010) Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 72:463–493

    PubMed  CAS  Google Scholar 

  • Koslow AR, Stromberg RR, Friedman LI, Lutz RJ, Hilbert SL, Schuster P (1986) A flow system for the study of shear forces upon cultured endothelial cells. J Biomech Eng 108:338–341

    PubMed  CAS  Google Scholar 

  • Kottra G, Fromter E (1984a) Rapid determination of intraepithelial resistance barriers by alternating current spectroscopy. I. Experimental procedures. Pflugers Arch 402:409–420

    PubMed  CAS  Google Scholar 

  • Kottra G, Fromter E (1984b) Rapid determination of intraepithelial resistance barriers by alternating current spectroscopy. II. Test of model circuits and quantification of results. Pflugers Arch 402:421–432

    PubMed  CAS  Google Scholar 

  • Krug SM, Fromm M, Gunzel D (2009) Two-path impedance spectroscopy for measuring paracellular and transcellular epithelial resistance. Biophys J 97:2202-2211

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lamontagne D, Pohl U, Busse R (1992) Mechanical deformation of vessel wall and shear stress determine the basal release of endothelium-derived relaxing factor in the intact rabbit coronary vascular bed. Circ Res 70:123–130

    PubMed  CAS  Google Scholar 

  • Levesque MJ, Nerem RM (1985) The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng 107:341–347

    PubMed  CAS  Google Scholar 

  • Li S, Chen BP, Azuma N, Hu YL, Wu SZ, Sumpio BE, Shyy JY, Chien S (1999) Distinct roles for the small GTPases Cdc42 and Rho in endothelial responses to shear stress. J Clin Invest 103:1141–1150

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lim JJ, Fischbarg J (1981) Electrical properties of rabbit corneal endothelium as determined from impedance measurements. Biophys J 36:677–695

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liu CL, Tam JC, Sanders AJ, Ko CH, Fung KP, Leung PC, Harding KG, Jiang WG, Lau CB (2013) Molecular angiogenic events of a two-herb wound healing formula involving MAPK and Akt signaling pathways in human vascular endothelial cells. Wound Repair Regen 21:579–587

    PubMed  Google Scholar 

  • Liu Y, Collins C, Kiosses WB, Murray AM, Joshi M, Shepherd TR, Fuentes EJ, Tzima E (2013) A novel pathway spatiotemporally activates Rac1 and redox signaling in response to fluid shear stress. J cell Biol 201:863–873

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lo CM, Keese CR, Giaever I (1994) pH changes in pulsed CO2 incubators cause periodic changes in cell morphology. Exp Cell Res 213:391–397

    PubMed  CAS  Google Scholar 

  • Lo CM, Keese CR, Giaever I (1999) Cell-substrate contact: another factor may influence transepithelial electrical resistance of cell layers cultured on permeable filters. Exp Cell Res 250:576–580

    PubMed  CAS  Google Scholar 

  • Lohmann C, Huwel S, Galla HJ (2002) Predicting blood–brain barrier permeability of drugs: evaluation of different in vitro assays. J Drug Target 10:263–276

    PubMed  CAS  Google Scholar 

  • Lvovich VF (2012) Impedance spectroscopy: applications to electrochemical and dielectric phenomena. Wiley, New York

    Google Scholar 

  • Mahringer A, Ott M, Reimold I, Reichel V, Fricker G (2011) The ABC of the blood–brain barrier—regulation of drug efflux pumps. Curr Pharm Des 17:2762–2770

    PubMed  CAS  Google Scholar 

  • Matter K, Balda MS (2003) Functional analysis of tight junctions. Methods 30:228–234

    PubMed  CAS  Google Scholar 

  • McKenzie JA, Ridley AJ (2007) Roles of Rho/ROCK and MLCK in TNF-alpha-induced changes in endothelial morphology and permeability. J Cell Physiol 213:221–228

    PubMed  CAS  Google Scholar 

  • Miao H, Hu YL, Shiu YT, Yuan S, Zhao Y, Kaunas R, Wang Y, Jin G, Usami S, Chien S (2005) Effects of flow patterns on the localization and expression of VE-cadherin at vascular endothelial cell junctions: in vivo and in vitro investigations. J Vasc Res 42:77–89

    PubMed  CAS  Google Scholar 

  • Michaelis S, Rommel CE, Endell J, Goring P, Wehrspohn R, Steinem C, Janshoff A, Galla HJ, Wegener J (2012) Macroporous silicon chips for laterally resolved, multi-parametric analysis of epithelial barrier function. Lab Chip 12:2329–2336

    PubMed  CAS  Google Scholar 

  • Michaelis S, Wegener J, Robelek R (2013) Label-free monitoring of cell-based assays: combining impedance analysis with SPR for multiparametric cell profiling. Biosens Bioelectron 49:63–70

    PubMed  CAS  Google Scholar 

  • Miller DS, Cannon RE (2013) Signaling pathways that regulate basal ABC transporter activity at the blood–brain barrier. Curr Pharm Des (in press)

  • Moy AB, Winter M, Kamath A, Blackwell K, Reyes G, Giaever I, Keese C, Shasby DM (2000) Histamine alters endothelial barrier function at cell-cell and cell-matrix sites. Am J Physiol Lung Cell Mol Physiol 278:L888–L898

    PubMed  CAS  Google Scholar 

  • Mun GI, Jang SI, Boo YC (2013) Laminar shear stress induces the expression of aquaporin 1 in endothelial cells involved in wound healing. Biochem Biophys Res Commun 430:554–559

    PubMed  CAS  Google Scholar 

  • Naruse K, Yamada T, Sokabe M (1998) Involvement of SA channels in orienting response of cultured endothelial cells to cyclic stretch. Am J Physiol 274:H1532–H1538

    PubMed  CAS  Google Scholar 

  • Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117:1161–1171

    PubMed Central  PubMed  CAS  Google Scholar 

  • Neuhaus W, Bogner E, Wirth M, Trzeciak J, Lachmann B, Gabor F, Noe CR (2006) A novel tool to characterize paracellular transport: the APTS-dextran ladder. Pharm Res 23:1491–1501

    PubMed  CAS  Google Scholar 

  • Noria S, Cowan DB, Gotlieb AI, Langille BL (1999) Transient and steady-state effects of shear stress on endothelial cell adherens junctions. Circ Res 85:504–514

    PubMed  CAS  Google Scholar 

  • Novak P, Li C, Shevchuk AI, Stepanyan R, Caldwell M, Hughes S, Smart TG, Gorelik J, Ostanin VP, Lab MJ, Moss GW, Frolenkov GI, Klenerman D, Korchev YE (2009) Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat Methods 6:279–281

    PubMed Central  PubMed  CAS  Google Scholar 

  • Opp D, Wafula B, Lim J, Huang E, Lo JC, Lo CM (2009) Use of electric cell-substrate impedance sensing to assess in vitro cytotoxicity. Biosens Bioelectron 24:2625–2629

    PubMed Central  PubMed  CAS  Google Scholar 

  • Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. Wiley, New York

    Google Scholar 

  • Pajkossy T (1994) Impedance of rough capacitive electrodes. J Electroanal Chem 364:111–125

    CAS  Google Scholar 

  • Pang Z, Antonetti DA, Tarbell JM (2005) Shear stress regulates HUVEC hydraulic conductivity by occludin phosphorylation. Ann Biomed Eng 33:1536–1545

    PubMed  Google Scholar 

  • Parker JC, Stevens T, Randall J, Weber DS, King JA (2006) Hydraulic conductance of pulmonary microvascular and macrovascular endothelial cell monolayers. Am J Physiol Lung Cell Mol Physiol 291:L30–L37

    PubMed  CAS  Google Scholar 

  • Patterson CE, Lum H (2001) Update on pulmonary edema: the role and regulation of endothelial barrier function. Endothelium 8:75–105

    PubMed  CAS  Google Scholar 

  • Phelps JE, DePaola N (2000) Spatial variations in endothelial barrier function in disturbed flows in vitro. Am J Physiol Heart Circ Physiol 278:H469–H476

    PubMed  CAS  Google Scholar 

  • Poelmann RE, Van der Heiden K, Gittenberger-de Groot A, Hierck BP (2008) Deciphering the endothelial shear stress sensor. Circulation 117:1124–1126

    PubMed  Google Scholar 

  • Powell DW (1981) Barrier function of epithelia. Am J Physiol 241:G275–G288

    PubMed  CAS  Google Scholar 

  • Predescu SA, Predescu DN, Malik AB (2007) Molecular determinants of endothelial transcytosis and their role in endothelial permeability. Am J Physiol Lung Cell Mol Physiol 293:L823–L842

    PubMed  CAS  Google Scholar 

  • Riha GM, Lin PH, Lumsden AB, Yao Q, Chen C (2005) Roles of hemodynamic forces in vascular cell differentiation. Ann Biomed Eng 33:772–779

    PubMed  Google Scholar 

  • Robelek R, Wegener J (2010) Label-free and time-resolved measurements of cell volume changes by surface plasmon resonance (SPR) spectroscopy. Biosens Bioelectron 25:1221–1224

    PubMed  CAS  Google Scholar 

  • Rothermel A, Nieber M, Muller J, Wolf P, Schmidt M, Robitzki AA (2006) Real-time measurement of PMA-induced cellular alterations by microelectrode array-based impedance spectroscopy. Biotechniques 41:445–450

    PubMed  CAS  Google Scholar 

  • Sakamoto N, Segawa K, Kanzaki M, Ohashi T, Sato M (2010) Role of p120-catenin in the morphological changes of endothelial cells exposed to fluid shear stress. Biochem Biophys Res Commun 398:426–432

    PubMed  CAS  Google Scholar 

  • Salmon AH, Neal CR, Harper SJ (2009) New aspects of glomerular filtration barrier structure and function: five layers (at least) not three. Curr Opin Nephrol Hypertens 18:197–205

    PubMed  CAS  Google Scholar 

  • Schnittler HJ (1998) Structural and functional aspects of intercellular junctions in vascular endothelium. Basic Res Cardiol 93 (Suppl 3):30–39

    PubMed  Google Scholar 

  • Schnittler HJ, Franke RP, Akbay U, Mrowietz C, Drenckhahn D (1993) Improved in vitro rheological system for studying the effect of fluid shear stress on cultured cells. Am J Physiol 265:C289–C298

    PubMed  CAS  Google Scholar 

  • Schulzke JD, Bojarski C, Zeissig S, Heller F, Gitter AH, Fromm M (2006) Disrupted barrier function through epithelial cell apoptosis. Ann N Y Acad Sci 1072:288–299

    PubMed  CAS  Google Scholar 

  • Scott CW, Peters MF (2010) Label-free whole-cell assays: expanding the scope of GPCR screening. Drug Discov Today 15:704–716

    PubMed  CAS  Google Scholar 

  • Seebach J, Dieterich P, Luo F, Schillers H, Vestweber D, Oberleithner H, Galla HJ, Schnittler HJ (2000) Endothelial barrier function under laminar fluid shear stress. Lab Invest 80:1819–1831

    PubMed  CAS  Google Scholar 

  • Seebach J, Donnert G, Kronstein R, Werth S, Wojciak-Stothard B, Falzarano D, Mrowietz C, Hell SW, Schnittler HJ (2007) Regulation of endothelial barrier function during flow-induced conversion to an arterial phenotype. Cardiovasc Res 75:596–607

    PubMed  CAS  Google Scholar 

  • Shikata Y, Rios A, Kawkitinarong K, DePaola N, Garcia JG, Birukov KG (2005) Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cells. Exp Cell Res 304:40–49

    PubMed  CAS  Google Scholar 

  • Sill H, Butler C, Hollis T, Tarbell J (1992) Albumin permeability and electrical resistance as means of assessing endothelial monolayer integrity in vitro. J Tissue Cult Methods 14:253–257

    Google Scholar 

  • Sill HW, Chang YS, Artman JR, Frangos JA, Hollis TM, Tarbell JM (1995) Shear stress increases hydraulic conductivity of cultured endothelial monolayers. Am J Physiol 268:H535–H543

    PubMed  CAS  Google Scholar 

  • Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V (2007) Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol 6:258–268

    PubMed Central  PubMed  CAS  Google Scholar 

  • Simionescu M, Simionescu N, Palade GE (1975) Segmental differentiations of cell junctions in the vascular endothelium. The microvasculature. J Cell Biol 67:863–885

    PubMed  CAS  Google Scholar 

  • Simionescu M, Simionescu N, Palade GE (1976) Segmental differentiations of cell junctions in the vascular endothelium. Arteries and veins. J Cell Biol 68:705–723

    PubMed  CAS  Google Scholar 

  • Steinem C, Janshoff A, Wegener J, Ulrich WP, Willenbrink W, Sieber M, Galla HJ (1997) Impedance and shear wave resonance analysis of ligand-receptor interactions at functionalized surfaces and of cell monolayers. Biosens Bioelectron 12:787–808

    PubMed  CAS  Google Scholar 

  • Stolpen AH, Guinan EC, Fiers W, Pober JS (1986) Recombinant tumor necrosis factor and immune interferon act singly and in combination to reorganize human vascular endothelial cell monolayers. Am J Pathol 123:16–24

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stolwijk JA, Hartmann C, Balani P, Albermann S, Keese CR, Giaever I, Wegener J (2011) Impedance analysis of adherent cells after in situ electroporation: non-invasive monitoring during intracellular manipulations. Biosens Bioelectron 26:4720–4727

    PubMed  CAS  Google Scholar 

  • Sun C, Wu MH, Yuan SY (2011) Nonmuscle myosin light-chain kinase deficiency attenuates atherosclerosis in apolipoprotein E-deficient mice via reduced endothelial barrier dysfunction and monocyte migration. Circulation 124:48–57

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sun C, Wu MH, Lee ES, Yuan SY (2012) A disintegrin and metalloproteinase 15 contributes to atherosclerosis by mediating endothelial barrier dysfunction via Src family kinase activity. Arterioscler Thromb Vasc Biol 32:2444–2451

    PubMed Central  PubMed  CAS  Google Scholar 

  • Suttorp N, Hessz T, Seeger W, Wilke A, Koob R, Lutz F, Drenckhahn D (1988) Bacterial exotoxins and endothelial permeability for water and albumin in vitro. Am J Physiol 255:C368–C376

    PubMed  CAS  Google Scholar 

  • Suttorp N, Fuchs T, Seeger W, Wilke A, Drenckhahn D (1989) Role of Ca2+ and Mg2+ for endothelial permeability of water and albumin in vitro. Lab Invest 61:183–191

    PubMed  CAS  Google Scholar 

  • Takahashi M, Ishida T, Traub O, Corson MA, Berk BC (1997) Mechanotransduction in endothelial cells: temporal signaling events in response to shear stress. J Vasc Res 34:212–219

    PubMed  CAS  Google Scholar 

  • Tarbell JM (2010) Shear stress and the endothelial transport barrier. Cardiovasc Res 87:320–330

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tarbell JM, Shi ZD (2013) Effect of the glycocalyx layer on transmission of interstitial flow shear stress to embedded cells. Biomech Model Mechanobiol 12:111–121

    PubMed Central  PubMed  Google Scholar 

  • Tarbell JM, Demaio L, Zaw MM (1999) Effect of pressure on hydraulic conductivity of endothelial monolayers: role of endothelial cleft shear stress. J Appl Physiol 87:261–268

    PubMed  CAS  Google Scholar 

  • Taylor SL, Wahl-Jensen V, Copeland AM, Jahrling PB, Schmaljohn CS (2013) Endothelial cell permeability during hantavirus infection involves factor XII-dependent increased activation of the kallikrein-kinin system. PLoS Pathogens 9:e1003470

    PubMed Central  PubMed  CAS  Google Scholar 

  • Terada LS (2008) What underlies endothelial shear sensing? The matrix, of course. Circ Res 103:562–564

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ting LH, Jahn JR, Jung JI, Shuman BR, Feghhi S, Han SJ, Rodriguez ML, Sniadecki NJ (2012) Flow mechanotransduction regulates traction forces, intercellular forces, and adherens junctions. Am J Physiol Heart Circ Physiol 302:H2220–H2229

    PubMed Central  PubMed  CAS  Google Scholar 

  • Traub O, Berk BC (1998) Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol 18:677–685

    PubMed  CAS  Google Scholar 

  • Tsukahara H, Noiri E, Jiang MZ, Hiraoka M, Mayumi M (2000) Role of nitric oxide in human pulmonary microvascular endothelial cell adhesion. Life Sci 67:1–11

    PubMed  CAS  Google Scholar 

  • Turner MR (1992) Flows of liquid and electrical current through monolayers of cultured bovine arterial endothelium. J Physiol (Lond) 449:1–20

    PubMed Central  CAS  Google Scholar 

  • Ukropec JA, Hollinger MK, Woolkalis MJ (2002) Regulation of VE-cadherin linkage to the cytoskeleton in endothelial cells exposed to fluid shear stress. Exp Cell Res 273:240–247

    PubMed  CAS  Google Scholar 

  • Vandoorne K, Addadi Y, Neeman M (2010) Visualizing vascular permeability and lymphatic drainage using labeled serum albumin. Angiogenesis 13:75–85

    PubMed Central  PubMed  CAS  Google Scholar 

  • Verkman AS (2002) Aquaporin water channels and endothelial cell function. J Anat 200:617–627

    PubMed Central  PubMed  CAS  Google Scholar 

  • Verkman AS (2006) Aquaporins in endothelia. Kidney Int 69:1120–1123

    PubMed  CAS  Google Scholar 

  • Vestweber D (2008) VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol 28:223–232

    PubMed  CAS  Google Scholar 

  • Wallez Y, Huber P (2008) Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim Biophys Acta 1778:794–809

    PubMed  CAS  Google Scholar 

  • Walsh TG, Murphy RP, Fitzpatrick P, Rochfort KD, Guinan AF, Murphy A, Cummins PM (2011) Stabilization of brain microvascular endothelial barrier function by shear stress involves VE-cadherin signaling leading to modulation of pTyr-occludin levels. J Cell Physiol 226:3053–3063

    PubMed  CAS  Google Scholar 

  • Warboys CM, Eric Berson R, Mann GE, Pearson JD, Weinberg PD (2010) Acute and chronic exposure to shear stress have opposite effects on endothelial permeability to macromolecules. Am J Physiol Heart Circ Physiol 298:H1850–H1856

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wedel-Parlow M von, Schrot S, Lemmen J, Treeratanapiboon L, Wegener J, Galla HJ (2011) Neutrophils cross the BBB primarily on transcellular pathways: an in vitro study. Brain Res 1367:62–76

    Google Scholar 

  • Wegener J, Sieber M, Galla HJ (1996) Impedance analysis of epithelial and endothelial cell monolayers cultured on gold surfaces. J Biochem Biophys Methods 32:151–170

    PubMed  CAS  Google Scholar 

  • Wegener J, Zink S, Rosen P, Galla H (1999) Use of electrochemical impedance measurements to monitor beta-adrenergic stimulation of bovine aortic endothelial cells. Pflugers Arch 437:925–934

    PubMed  CAS  Google Scholar 

  • Wegener J, Hakvoort A, Galla HJ (2000a) Barrier function of porcine choroid plexus epithelial cells is modulated by cAMP-dependent pathways in vitro. Brain Res 853:115–124

    PubMed  CAS  Google Scholar 

  • Wegener J, Keese CR, Giaever I (2000b) Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res 259:158–166

    PubMed  CAS  Google Scholar 

  • Wegener J, Abrams D, Willenbrink W, Galla HJ, Janshoff A (2004) Automated multi-well device to measure transepithelial electrical resistances under physiological conditions. Biotechniques 37:590–597

    PubMed  CAS  Google Scholar 

  • Wit C de (2010) Different pathways with distinct properties conduct dilations in the microcirculation in vivo. Cardiovasc Res 85:604–613

    Google Scholar 

  • Wojciak-Stothard B, Ridley AJ (2003) Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases. J Cell Biol 161:429–439

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xu Q (2009) Disturbed flow-enhanced endothelial turnover in atherosclerosis. Trends Cardiovasc Med 19:191–195

    PubMed  CAS  Google Scholar 

  • Yao Y, Rabodzey A, Dewey CF Jr (2007) Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am J Physiol Heart Circ Physiol 293:H1023–H1030

    PubMed  CAS  Google Scholar 

  • Yin F, Watsky MA (2005) LPA and S1P increase corneal epithelial and endothelial cell transcellular resistance. Invest Ophthalmol Vis Sci 46:1927–1933

    PubMed  CAS  Google Scholar 

  • Yoshida Y, Okano M, Wang S, Kobayashi M, Kawasumi M, Hagiwara H, Mitsumata M (1995) Hemodynamic-force-induced difference of interendothelial junctional complexes. Ann N Y Acad Sci 748:104–120

    PubMed  CAS  Google Scholar 

  • Young EF, Smilenov LB (2011) Impedance-based surveillance of transient permeability changes in coronary endothelial monolayers after exposure to ionizing radiation. Radiat Res 176:415–424

    PubMed  CAS  Google Scholar 

  • Young EW, Watson MW, Srigunapalan S, Wheeler AR, Simmons CA (2010) Technique for real-time measurements of endothelial permeability in a microfluidic membrane chip using laser-induced fluorescence detection. Anal Chem 82:808–816

    PubMed  CAS  Google Scholar 

  • Zink S, Rosen P, Sackmann B, Lemoine H (1993) Regulation of endothelial permeability by beta-adrenoceptor agonists: contribution of beta 1- and beta 2-adrenoceptors. Biochim Biophys Acta 1178:286–298

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Seebach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wegener, J., Seebach, J. Experimental tools to monitor the dynamics of endothelial barrier function: a survey of in vitro approaches. Cell Tissue Res 355, 485–514 (2014). https://doi.org/10.1007/s00441-014-1810-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1810-3

Keywords

Navigation