Skip to main content

Constructing and Analyzing Metabolic Flux Models of Microbial Communities

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Abstract

Here we provide a broad overview of current research in modeling the growth and behavior of microbial communities, while focusing primarily on metabolic flux modeling techniques, including the reconstruction of individual species models, reconstruction of mixed-bag models, and reconstruction of multi-species models. We describe how flux balance analysis may be applied with these various model types to explore the interactions of a microbial community with its environment, as well as the interactions of individual species with each other. We demonstrate all discussed model reconstruction and analysis approaches using the Department of Energy’s Systems Biology Knowledgebase (KBase), constructing and importing genome-scale metabolic models of Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii, and subsequently combining them into a community model of the gut microbiome. We also use KBase to explore how these species interact with each other and with the gut environment, exploring the trade-offs in information provided by applying each metabolic flux modeling approach. Overall, we conclude that no single approach is better than the others, and often there is much to be gained by applying multiple approaches synergistically when exploring the ecology of a microbial community.

Author contributed equally with all other contributors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heinken A et al (2013) Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes 4(1):28–40

    Article  PubMed  PubMed Central  Google Scholar 

  2. Korem T et al (2015) Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science 349(6252):1101–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mouser PJ et al (2009) Quantifying expression of Geobacter spp. oxidative stress genes in pure culture and during in situ uranium bioremediation. ISME J 3(4):454–465

    Article  CAS  PubMed  Google Scholar 

  4. Chen Y et al (2015) Synthetic biology. Emergent genetic oscillations in a synthetic microbial consortium. Science 349(6251):986–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. De Roy K et al (2014) Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities. Environ Microbiol 16(6):1472–1481

    Article  PubMed  Google Scholar 

  6. Pandhal J, Noirel J (2014) Synthetic microbial ecosystems for biotechnology. Biotechnol Lett 36(6):1141–1151

    Article  CAS  PubMed  Google Scholar 

  7. National Research Council (U.S.). Committee on Metagenomics: Challenges and Functional Applications. and National Academies Press (U.S.) (2007) The new science of metagenomics : revealing the secrets of our microbial planet. National Academies Press, Washington, DC, 158 pp

    Google Scholar 

  8. Larsen PE et al (2011) Predicted relative metabolomic turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset. Microb Inform Exp 1(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  9. Meyer F et al (2008) The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xia F, Stevens RL (2012) Kiki: Terabase metagenome assembly with massively parallel computers. In: GitHub. https://github.com/geneassembly/kiki

  11. Borenstein E et al (2008) Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc Natl Acad Sci U S A 105(38):14482–14487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brown CT et al (2015) Unusual biology across a group comprising more than 15% of domain bacteria. Nature 523(7559):208–211

    Article  CAS  PubMed  Google Scholar 

  13. Sharon I et al (2013) Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Res 23(1):111–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Albertsen M et al (2013) Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31(6):533–538

    Article  CAS  PubMed  Google Scholar 

  15. Carr R, Shen-Orr SS, Borenstein E (2013) Reconstructing the genomic content of microbiome taxa through shotgun metagenomic deconvolution. PLoS Comput Biol 9(10), e1003292

    Article  PubMed  PubMed Central  Google Scholar 

  16. Freilich S et al (2009) Metabolic-network-driven analysis of bacterial ecological strategies. Genome Biol 10(6):R61

    Article  PubMed  PubMed Central  Google Scholar 

  17. Harcombe WR et al (2014) Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep 7(4):1104–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Allison SD, Martiny JB (2008) Colloquium paper: resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105(Suppl 1):11512–11519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shade A et al (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol 3:417

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stolyar S et al (2007) Metabolic modeling of a mutualistic microbial community. Mol Syst Biol 3:92

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chiu HC, Levy R, Borenstein E (2014) Emergent biosynthetic capacity in simple microbial communities. PLoS Comput Biol 10(7), e1003695

    Article  PubMed  PubMed Central  Google Scholar 

  22. Klitgord N, Segre D (2010) Environments that induce synthetic microbial ecosystems. PLoS Comput Biol 6(11), e1001002

    Article  PubMed  PubMed Central  Google Scholar 

  23. Levy R, Borenstein E (2013) Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proc Natl Acad Sci U S A 110(31):12804–12809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mahadevan R, Edwards JS, Doyle FJ 3rd (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83(3):1331–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heinken A, Thiele I (2015) Systematic prediction of health-relevant human-microbial co-metabolism through a computational framework. Gut Microbes 6(2):120–130

    Article  PubMed  PubMed Central  Google Scholar 

  26. Aziz RK et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75

    Article  PubMed  PubMed Central  Google Scholar 

  27. Henry CS et al (2010) High-throughput generation, optimization, and analysis of genome-scale metabolic models. Nat Biotechnol 1672:1–6

    Google Scholar 

  28. Devoid S et al (2013) Automated genome annotation and metabolic model reconstruction in the SEED and Model SEED. Methods Mol Biol 985:17–45

    Article  CAS  PubMed  Google Scholar 

  29. Thiele I, Palsson B (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protocols 5:93–121

    Article  CAS  PubMed  Google Scholar 

  30. Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248

    Google Scholar 

  31. Agren R et al (2013) The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 9(3), e1002980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dias O et al (2015) Reconstructing genome-scale metabolic models with merlin. Nucleic Acids Res 43(8):3899–3910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Delcher AL et al (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6):673–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hyatt D et al (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kumar VS, Dasika MS, Maranas CD (2007) Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics 8:212

    Article  Google Scholar 

  36. Kumar VS, Maranas CD (2009) GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLoS Comput Biol 5(3), e1000308

    Article  PubMed  PubMed Central  Google Scholar 

  37. Reed JL et al (2006) Systems approach to refining genome annotation. Proc Natl Acad Sci USA 103(46):17480–17484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Henry CS et al (2009) iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations. Genome Biol 10(6):R69

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tanaka K et al (2013) Building the repertoire of dispensable chromosome regions in Bacillus subtilis entails major refinement of cognate large-scale metabolic model. Nucleic Acids Res 41:687–699

    Google Scholar 

  40. Allison SD (2012) A trait-based approach for modelling microbial litter decomposition. Ecol Lett 15(9):1058–1070

    Article  CAS  PubMed  Google Scholar 

  41. Freilich S et al (2011) Competitive and cooperative metabolic interactions in bacterial communities. Nat Commun 2:589

    Article  PubMed  Google Scholar 

  42. Carr R, Borenstein E (2012) NetSeed: a network-based reverse-ecology tool for calculating the metabolic interface of an organism with its environment. Bioinformatics 28(5):734–735

    Article  CAS  PubMed  Google Scholar 

  43. Edwards JS, Ibarra RU, Palsson BO (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19(2):125–130

    Article  CAS  PubMed  Google Scholar 

  44. Lee DH, Palsson BO (2010) Adaptive evolution of Escherichia coli K-12 MG1655 during growth on a nonnative carbon source, L-1,2-propanediol. Appl Environ Microbiol 76(13):4158–4168

    Google Scholar 

  45. Schellenberger J, Palsson BO (2009) Use of randomized sampling for analysis of metabolic networks. J Biol Chem 284(9):5457–5461

    Article  CAS  PubMed  Google Scholar 

  46. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5(4):264–276

    Article  CAS  PubMed  Google Scholar 

  47. Kim MK, Lun DS (2014) Methods for integration of transcriptomic data in genome-scale metabolic models. Comput Struct Biotechnol J 11(18):59–65

    Article  PubMed  PubMed Central  Google Scholar 

  48. Seaver SM et al (2015) Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm. Front Plant Sci 6:142

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hansen JJ et al (2012) The colitis-associated transcriptional profile of commensal Bacteroides thetaiotaomicron enhances adaptive immune responses to a bacterial antigen. PLoS One 7(8), e42645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Abubucker S et al (2012) Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8(6), e1002358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dal’Molin CG et al (2010) C4GEM, a genome-scale metabolic model to study C4 plant metabolism. Plant Physiol 154(4):1871–1885

    Google Scholar 

  52. Bordbar A et al (2010) Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol Syst Biol 6:422

    Google Scholar 

  53. Zomorrodi AR, Maranas CD (2012) OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput Biol 8(2), e1002363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhuang K et al (2011) Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 5:305–316

    Google Scholar 

  55. Gomez JA, Hoffner K, Barton PI (2014) DFBAlab: a fast and reliable MATLAB code for dynamic flux balance analysis. BMC Bioinformatics 15:409

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hoffner K, Harwood SM, Barton PI (2013) A reliable simulator for dynamic flux balance analysis. Biotechnol Bioeng 110(3):792–802

    Article  CAS  PubMed  Google Scholar 

  57. Salimi F, Zhuang K, Mahadevan R (2010) Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotechnol J 5(7):726–738

    Article  CAS  PubMed  Google Scholar 

  58. Hanly TJ, Urello M, Henson MA (2012) Dynamic flux balance modeling of S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures. Appl Microbiol Biotechnol 93(6):2529–2541

    Article  CAS  PubMed  Google Scholar 

  59. Hanly TJ, Henson MA (2011) Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol Bioeng 108(2):376–385

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Biological and Environmental Research; under contract DE-AC02-06CH11357 as a part of the DOE Knowledgebase project (MD, JE, SS, NC, and NH), and by the National Science Foundation grant number EFMA-1137089 (CSH, PW, JF, and TK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Henry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Faria, J.P. et al. (2016). Constructing and Analyzing Metabolic Flux Models of Microbial Communities. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2016_215

Download citation

  • DOI: https://doi.org/10.1007/8623_2016_215

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50449-9

  • Online ISBN: 978-3-662-50450-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics