Skip to main content

Automated Genome Annotation and Metabolic Model Reconstruction in the SEED and Model SEED

  • Protocol
  • First Online:
Systems Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 985))

Abstract

Over the past decade, genome-scale metabolic models have proven to be a crucial resource for predicting organism phenotypes from genotypes. These models provide a means of rapidly translating detailed knowledge of thousands of enzymatic processes into quantitative predictions of whole-cell behavior. Until recently, the pace of new metabolic model development was eclipsed by the pace at which new genomes were being sequenced. To address this problem, the RAST and the Model SEED framework were developed as a means of automatically producing annotations and draft genome-scale metabolic models. In this chapter, we describe the automated model reconstruction process in detail, starting from a new genome sequence and finishing on a functioning genome-scale metabolic model. We break down the model reconstruction process into eight steps: submitting a genome sequence to RAST, annotating the genome, curating the annotation, submitting the annotation to Model SEED, reconstructing the core model, generating the draft biomass reaction, auto-completing the model, and curating the model. Each of these eight steps is documented in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feist AM, Palsson BO (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 26:659–667

    Article  CAS  Google Scholar 

  2. Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (2010) High-throughput generation, optimization, and analysis of genome-scale metabolic models. Nat Biotechnol 1672:1–6

    Google Scholar 

  3. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75

    Article  Google Scholar 

  4. Overbeek R, Disz T, Stevens R (2004) The SEED: a peer-to-peer environment for genome annotation. Commun ACM 47:46–51

    Article  Google Scholar 

  5. DeJongh M, Formsma K, Boillot P, Gould J, Rycenga M, Best A (2007) Toward the automated generation of genome-scale metabolic networks in the SEED. BMC Bioinformatics 8:139

    Article  Google Scholar 

  6. Jankowski MD, Henry CS, Broadbelt LJ, Hatzimanikatis V (2008) Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J 95:1487–1499

    Article  CAS  Google Scholar 

  7. Henry CS, Zinner J, Cohoon M, Stevens R (2009) iBsu1103: a new genome scale metabolic model of B. subtilis based on SEED annotations. Genome Biol 10:R69

    Article  Google Scholar 

  8. Kumar VS, Maranas CD (2009) GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLoS Comput Biol 5:e1000308

    Article  Google Scholar 

  9. Suthers PF, Dasika MS, Kumar VS, Denisov G, Glass JI, Maranas CD (2009) A genome-scale metabolic reconstruction of Mycoplasma genitalium, iPS189. PLoS Comput Biol 5:e1000285

    Article  Google Scholar 

  10. Thiele I, Palsson B (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121

    Article  CAS  Google Scholar 

  11. Schuler GD, Epstein JA, Ohkawa H, Kans JA (1996) Entrez: molecular biology database and retrieval system. Methods Enzymol 266:141–162

    Article  CAS  Google Scholar 

  12. Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A 97:5528–5533

    Article  CAS  Google Scholar 

  13. Papoutsakis ET, Meyer CL (1985) Equations and calculations of product yields and preferred pathways for butanediol and mixed-acid fermentations. Biotechnol Bioeng 27:50–66

    Article  CAS  Google Scholar 

  14. Jin YS, Jeffries TW (2004) Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. Metab Eng 6:229–238

    Article  CAS  Google Scholar 

  15. Varma A, Palsson BO (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60:3724–3731

    CAS  Google Scholar 

  16. Varma A, Palsson BO (1993) Metabolic capabilities of Escherichia coli. 2. Optimal-growth patterns. J Theor Biol 165:503–522

    Article  CAS  Google Scholar 

  17. Varma A, Palsson BO (1993) Metabolic capabilities of Escherichia coli.1. Synthesis of biosynthetic precursors and cofactors. J Theor Biol 165:477–502

    Article  CAS  Google Scholar 

  18. Edwards JS, Ibarra RU, Palsson BO (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19:125–130

    Article  CAS  Google Scholar 

  19. Meyer F, Overbeek R, Rodriguez A (2009) FIGfams: yet another set of protein families. Nucleic Acids Res 37:6643–6654

    Article  CAS  Google Scholar 

  20. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641

    Article  CAS  Google Scholar 

  21. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679

    Article  CAS  Google Scholar 

  22. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  23. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  Google Scholar 

  24. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143

    CAS  Google Scholar 

  25. Kummel A, Panke S, Heinemann M (2006) Systematic assignment of thermodynamic constraints in metabolic network models. BMC Bioinformatics 7:512

    Article  Google Scholar 

  26. Krumholz EW, Yang H, Weisenhorn P, Henry CS, Libourel IG (2012) Genome-wide metabolic network reconstruction of the picoalga Ostreococcus. J Exp Bot 63:2353–2362

    Article  CAS  Google Scholar 

  27. DeJongh M, Bockstege B, Frybarger P, Hazekamp N, Kammeraad J, McGeehan T (2012) CytoSEED: a Cytoscape plugin for viewing, manipulating and analyzing metabolic models created by the Model SEED. Bioinformatics 28:891–892

    Article  CAS  Google Scholar 

  28. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  CAS  Google Scholar 

  29. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2:727–738

    Article  CAS  Google Scholar 

  30. Rocha I, Maia P, Evangelista P, Vilaca P, Soares S, Pinto JP, Nielsen J, Patil KR, Ferreira EC, Rocha M (2010) OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 4:45

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the entire SEED, Model SEED, and CytoSEED teams at Argonne National Laboratory, Fellowship for Interpretation of Genomes, Hope College, and University of Chicago for efforts on the frameworks described in this chapter. This work was supported by the US Department of Energy under contract DE-ACO2-06CH11357 (SD, CH), the National Institute of Allergy and Infectious Diseases under contract HHSN266200400042C (RO), and the National Science Foundation under grants MCB-0745100 and DBI-0850546 (MD, AB, VV, RO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Henry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Devoid, S., Overbeek, R., DeJongh, M., Vonstein, V., Best, A.A., Henry, C. (2013). Automated Genome Annotation and Metabolic Model Reconstruction in the SEED and Model SEED. In: Alper, H. (eds) Systems Metabolic Engineering. Methods in Molecular Biology, vol 985. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-299-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-299-5_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-298-8

  • Online ISBN: 978-1-62703-299-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics