Skip to main content

Advertisement

Log in

New perspectives in nanotherapeutics for chronic respiratory diseases

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

A Correction to this article was published on 06 October 2017

This article has been updated

Abstract

According to the World Health Organization (WHO), hundreds of millions of people of all ages and in all countries suffer from chronic respiratory diseases, with particular negative consequences such as poor health-related quality of life, impaired work productivity, and limitations in the activities of daily living. Chronic obstructive pulmonary disease, asthma, occupational lung diseases (such as silicosis), cystic fibrosis, and pulmonary arterial hypertension are the most common of these diseases, and none of them are curable with current therapies. The advent of nanotechnology holds great therapeutic promise for respiratory conditions, because non-viral vectors are able to overcome the mucus and lung remodeling barriers, increasing pharmacologic and therapeutic potency. It has been demonstrated that the extent of pulmonary nanoparticle uptake depends not only on the physical and chemical features of nanoparticles themselves, but also on the health status of the organism; thus, the huge diversity in nanotechnology could revolutionize medicine, but safety assessment is a challenging task. Within this context, the present review discusses some of the major new perspectives in nanotherapeutics for lung disease and highlights some of the most recent studies in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 06 October 2017

    The original version of this article unfortunately contains an error. The third author’s name “Patricia Rieken Macedo Rocco” was incorrectly spelled with “Roccco”. The correct author name is now presented in the authorgroup.

References

  • Ahmad Z, Sharma S, Khuller GK (2005) Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int J Antimicrob Agents 26(4):298–303

    PubMed  Google Scholar 

  • Akagi S, Nakamura K, Matsubara H et al (2016) Intratracheal administration of prostacyclin analogue-incorporated nanoparticles ameliorates the development of monocrotaline and sugen-hypoxia-induced pulmonary arterial hypertension. J Cardiovasc Pharmacol 67(4):290–298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akagi S, Nakamura K, Miura D et al (2015) Delivery of imatinib-incorporated nanoparticles into lungs suppresses the development of monocrotaline-induced pulmonary arterial hypertension. Int Heart J 56(3):354–359

    CAS  PubMed  Google Scholar 

  • Al Faraj A, Shaik AS, Afzal S et al (2014) MR imaging and targeting of a specific alveolar macrophage subpopulation in LPS-induced COPD animal model using antibody-conjugated magnetic nanoparticles. Int J Nanomedicine 9:1491–1503

    PubMed  PubMed Central  Google Scholar 

  • Ali W, Moghaddam FJ, Raza MU et al (2016) Electromechanical transducer for rapid detection, discrimination and quantification of lung cancer cells. Nanotechnology 27(19):195101

    PubMed  Google Scholar 

  • Alton EW, Armstrong DK, Ashby D et al (2015) Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir Med 3(9):684–691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amirfazli A (2007) Nanomedicine: magnetic nanoparticles hit the target. Nat Nanotechnol 2(8):467–468

    CAS  PubMed  Google Scholar 

  • Anselmo AC, Mitragotri S (2014) An overview of clinical and commercial impact of drug delivery systems. J Control Release 190:15–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ardekani S, Scott HA, Gupta S et al (2015) Nanoliposomal nitroglycerin exerts potent anti-inflammatory effects. Sci Rep 5:16258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azzazy HM, Mansour MM, Kazmierczak SC (2007) From diagnostics to therapy: prospects of quantum dots. Clin Biochem 40(13–14):917–927

    CAS  PubMed  Google Scholar 

  • Barnes PJ (2012) Severe asthma: advances in current management and future therapy. J Allergy Clin Immunol 129(1):48–59

    CAS  PubMed  Google Scholar 

  • Bhavna, Ahmad FJ, Mittal G et al (2009) Nano-salbutamol dry powder inhalation: a new approach for treating broncho-constrictive conditions. Eur J Pharm Biopharm 71(2):282–291

    CAS  PubMed  Google Scholar 

  • Bivas-Benita M, Lin MY, Bal SM et al (2009) Pulmonary delivery of DNA encoding mycobacterium tuberculosis latency antigen Rv1733c associated to PLGA-PEI nanoparticles enhances T cell responses in a DNA prime/protein boost vaccination regimen in mice. Vaccine 27(30):4010–4017

    CAS  PubMed  Google Scholar 

  • Boylan NJ, Kim AJ, Suk JS et al (2012a) Enhancement of airway gene transfer by DNA nanoparticles using a pH-responsive block copolymer of polyethylene glycol and poly-L-lysine. Biomaterials 33(7):2361–2371

    CAS  PubMed  Google Scholar 

  • Boylan NJ, Suk JS, Lai SK et al (2012b) Highly compacted DNA nanoparticles with low MW PEG coatings: in vitro, ex vivo and in vivo evaluation. J Control Release 157(1):72–79

    CAS  PubMed  Google Scholar 

  • Brenner JS, Bhamidipati K, Glassman PM et al (2017) Mechanisms that determine nanocarrier targeting to healthy versus inflamed lung regions. Nanomedicine 13(4):1495–1506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caplen NJ, Alton EW, Middleton PG et al (1995) Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat Med 1(1):39–46

    CAS  PubMed  Google Scholar 

  • Chen HW, Su SF, Chien CT et al (2006) Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J 20(13):2393–2395

    CAS  PubMed  Google Scholar 

  • Chen L, Nakano K, Kimura S et al (2011) Nanoparticle-mediated delivery of pitavastatin into lungs ameliorates the development and induces regression of monocrotaline-induced pulmonary artery hypertension. Hypertension 57(2):343–350

    CAS  PubMed  Google Scholar 

  • Chen X, Huang W, Wong BC et al (2012) Liposomes prolong the therapeutic effect of anti-asthmatic medication via pulmonary delivery. Int J Nanomedicine 7:1139–1148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper V, Metcalf L, Versnel J et al (2015) Patient-reported side effects, concerns and adherence to corticosteroid treatment for asthma, and comparison with physician estimates of side-effect prevalence: a UK-wide, cross-sectional study. NPJ Prim Care Respir Med 25:15026

    PubMed  PubMed Central  Google Scholar 

  • Cuccarese MF, Dubach JM, Pfirschke C et al (2017) Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. Nat Commun 8:14293

    CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva AL, Martini SV, Abreu SC et al (2014) DNA nanoparticle-mediated thymulin gene therapy prevents airway remodeling in experimental allergic asthma. J Control Release 180:125–133

    PubMed  PubMed Central  Google Scholar 

  • da Silva AL, Santos RS, Xisto DG et al (2013) Nanoparticle-based therapy for respiratory diseases. An Acad Bras Cienc 85(1):137–146

    PubMed  Google Scholar 

  • Depreter F, Pilcer G, Amighi K (2013) Inhaled proteins: challenges and perspectives. Int J Pharm 447(1–2):251–280

    CAS  PubMed  Google Scholar 

  • Desai N (2012) Challenges in development of nanoparticle-based therapeutics. AAPS J 14(2):282–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Gioia S, Trapani A, Castellani S et al (2015) Nanocomplexes for gene therapy of respiratory diseases: targeting and overcoming the mucus barrier. Pulm Pharmacol Ther 34:8–24

    PubMed  Google Scholar 

  • Digesu CS, Hofferberth SC, Grinstaff MW, Colson YL (2016) From diagnosis to treatment: clinical applications of nanotechnology in thoracic surgery. Thorac Surg Clin 26(2):215–228

    PubMed  PubMed Central  Google Scholar 

  • Dwivedi MV, Harishchandra RK, Koshkina O et al (2014) Size influences the effect of hydrophobic nanoparticles on lung surfactant model systems. Biophys J 106(1):289–298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emerich DF, Snodgrass P, Lafreniere D et al (2002) Sustained release chemotherapeutic microspheres provide superior efficacy over systemic therapy and local bolus infusions. Pharm Res 19(7):1052–1060

    CAS  PubMed  Google Scholar 

  • Fain SB, Panth SR, Evans MD et al (2006) Early emphysematous changes in asymptomatic smokers: detection with 3He MR imaging. Radiology 239(3):875–883

    PubMed  Google Scholar 

  • Geiser M, Quaile O, Wenk A et al (2013) Cellular uptake and localization of inhaled gold nanoparticles in lungs of mice with chronic obstructive pulmonary disease. Part Fibre Toxicol 10:19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Global Initiative for Chronic Obstructive Lung Disease (GOLD) (2017) Global strategy for the diagnosis, management, and prevention of COPD

  • González-García I, Solé RV, Costa J (2002) Metapopulation dynamics and spatial heterogeneity in cancer. Proc Natl Acad Sci U S A 99(20):13085–13089

    PubMed  PubMed Central  Google Scholar 

  • Grenier PA, Fetita CI, Brillet PY (2016) Quantitative computed tomography imaging of airway remodeling in severe asthma. Quant Imaging Med Surg 6(1):76–83

    PubMed  PubMed Central  Google Scholar 

  • Günday Türeli N, Türeli AE, Schneider M (2016) Optimization of ciprofloxacin complex loaded PLGA nanoparticles for pulmonary treatment of cystic fibrosis infections: design of experiments approach. Int J Pharm 515(1–2):343–351

    PubMed  Google Scholar 

  • Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7(10):569–579

    CAS  PubMed  Google Scholar 

  • Gupta V, Gupta N, Shaik IH et al (2013) Liposomal fasudil, a rho-kinase inhibitor, for prolonged pulmonary preferential vasodilation in pulmonary arterial hypertension. J Control Release 167(2):189–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heijerman H, Westerman E, Conway S et al (2009) Inhaled medication and inhalation devices for lung disease in patients with cystic fibrosis: a European consensus. J Cyst Fibros 8(5):295–315

    CAS  PubMed  Google Scholar 

  • Holloway JW, Yang IA, Holgate ST (2010) Genetics of allergic disease. J Allergy Clin Immunol 125(2 Suppl 2):S81–S94

    PubMed  Google Scholar 

  • Ishihara T, Hayashi E, Yamamoto S et al (2015) Encapsulation of beraprost sodium in nanoparticles: analysis of sustained release properties, targeting abilities and pharmacological activities in animal models of pulmonary arterial hypertension. J Control Release 197:97–104

    CAS  PubMed  Google Scholar 

  • Iyer R, Hsia CC, Nguyen KT (2015) Nano-therapeutics for the lung: state-of-the-art and future perspectives. Curr Pharm Des 21(36):5233–5244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson JK, Zhang X, Llewellen S, Hunter WL, Burt HM (2004) The characterization of novel polymeric paste formulations for intratumoral delivery. Int J Pharm 270(1–2):185–198

    CAS  PubMed  Google Scholar 

  • Ju J, Li R, Gu S et al (2014) Impact of emphysema heterogeneity on pulmonary function. PLoS One 9(11):e113320

    PubMed  PubMed Central  Google Scholar 

  • Kenyon NJ, Bratt JM, Lee J et al (2013) Self-assembling nanoparticles containing dexamethasone as a novel therapy in allergic airways inflammation. PLoS One 8(10):e77730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Key J, Leary JF (2014) Nanoparticles for multimodal in vivo imaging in nanomedicine. Int J Nanomedicine 9:711–726

    PubMed  PubMed Central  Google Scholar 

  • Kim SH, Ye YM, Lee HY, Sin HJ, Park HS (2011) Combined pharmacogenetic effect of ADCY9 and ADRB2 gene polymorphisms on the bronchodilator response to inhaled combination therapy. J Clin Pharm Ther 36(3):399–405

    CAS  PubMed  Google Scholar 

  • Kimura S, Egashira K, Chen L et al (2009) Nanoparticle-mediated delivery of nuclear factor kappaB decoy into lungs ameliorates monocrotaline-induced pulmonary arterial hypertension. Hypertension 53(5):877–883

    CAS  PubMed  Google Scholar 

  • Kolte A, Patil S, Lesimple P, Hanrahan JW, Misra A (2017) PEGylated composite nanoparticles of PLGA and polyethylenimine for safe and efficient delivery of pDNA to lungs. Int J Pharm 524(1–2):382–396

    CAS  PubMed  Google Scholar 

  • Kong WH, Lee WJ, Cui ZY et al (2007) Nanoparticulate carrier containing water-insoluble iodinated oil as a multifunctional contrast agent for computed tomography imaging. Biomaterials 28(36):5555–5561

    CAS  PubMed  Google Scholar 

  • Kong X, Hellermann GR, Zhang W et al (2008) Chitosan interferon-gamma nanogene therapy for lung disease: modulation of T-cell and dendritic cell immune responses. Allergy Asthma Clin Immunol 4(3):95–105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Köping-Höggård M, Tubulekas I, Guan H et al (2001) Chitosan as a nonviral gene delivery system. Structure–property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 8(14):1108–1121

    PubMed  Google Scholar 

  • Kumar M, Kong X, Behera AK et al (2003) Chitosan IFN-gamma-pDNA nanoparticle (CIN) therapy for allergic asthma. Genet Vaccines Ther 1(1):3

    PubMed  PubMed Central  Google Scholar 

  • Kuzmov A, Minko T (2015) Nanotechnology approaches for inhalation treatment of lung diseases. J Control Release 219:500–518

    CAS  PubMed  Google Scholar 

  • Lawani MA, Zongo F, Breton MC et al (2017) Factors associated with adherence to asthma treatment with inhaled corticosteroids: a cross-sectional exploratory study. J Asthma (in press)

  • Lee HY, Mohammed KA, Nasreen N (2016) Nanoparticle-based targeted gene therapy for lung cancer. Am J Cancer Res 6(5):1118–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Thompson DH (2017) Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(5)

  • Letsou GV, Safi HJ, Reardon MJ et al (1999) Pharmacokinetics of liposomal aerosolized cyclosporine a for pulmonary immunosuppression. Ann Thorac Surg 68(6):2044–2048

    CAS  PubMed  Google Scholar 

  • Lin G, Ouyang Q, Hu R et al (2015) In vivo toxicity assessment of non-cadmium quantum dots in BALB/c mice. Nanomedicine 11(2):341–350

    CAS  PubMed  Google Scholar 

  • Loira-Pastoriza C, Todoroff J, Vanbever R (2014) Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev 75:81–91

    CAS  PubMed  Google Scholar 

  • Löndahl J, Jakobsson JK, Broday DM, Aaltonen HL, Wollmer P (2017) Do nanoparticles provide a new opportunity for diagnosis of distal airspace disease? Int J Nanomedicine 12:41–51

    PubMed  Google Scholar 

  • Lopes-Pacheco M, Bandeira E, Morales MM (2016) Cell-based therapy for silicosis. Stem Cells Int 2016:5091838

    PubMed  PubMed Central  Google Scholar 

  • Mall MA, Galietta LJ (2015) Targeting ion channels in cystic fibrosis. J Cyst Fibros 14(5):561–570

    CAS  PubMed  Google Scholar 

  • Manunta MD, Tagalakis AD, Attwood M et al (2017) Delivery of ENaC siRNA to epithelial cells mediated by a targeted nanocomplex: a therapeutic strategy for cystic fibrosis. Sci Rep 7(1):700

    PubMed  PubMed Central  Google Scholar 

  • Mastorakos P, da Silva AL, Chisholm J et al (2015) Highly compacted biodegradable DNA nanoparticles capable of overcoming the mucus barrier for inhaled lung gene therapy. Proc Natl Acad Sci U S A 112(28):8720–8725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuo Y, Ishihara T, Ishizaki J et al (2009) Effect of betamethasone phosphate loaded polymeric nanoparticles on a murine asthma model. Cell Immunol 260(1):33–38

    CAS  PubMed  Google Scholar 

  • McLendon JM, Joshi SR, Sparks J et al (2015) Lipid nanoparticle delivery of a microRNA-145 inhibitor improves experimental pulmonary hypertension. J Control Release 210:67–75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merdan T, Callahan J, Petersen H et al (2003) Pegylated polyethylenimine-Fab′ antibody fragment conjugates for targeted gene delivery to human ovarian carcinoma cells. Bioconjug Chem 14(5):989–996

    CAS  PubMed  Google Scholar 

  • Merkel OM, Beyerle A, Beckmann BM et al (2011a) Polymer-related off-target effects in non-viral siRNA delivery. Biomaterials 32(9):2388–2398

    CAS  PubMed  Google Scholar 

  • Merkel OM, Urbanics R, Bedocs P et al (2011b) In vitro and in vivo complement activation and related anaphylactic effects associated with polyethylenimine and polyethylenimine-graft-poly(ethylene glycol) block copolymers. Biomaterials 32(21):4936–4942

    CAS  PubMed  Google Scholar 

  • Mohamed NA, Ahmetaj-Shala B, Duluc L et al (2016) A new NO-releasing nanoformulation for the treatment of pulmonary arterial hypertension. J Cardiovasc Transl Res 9(2):162–164

    PubMed  PubMed Central  Google Scholar 

  • Moreau-Marquis S, Stanton BA, O’Toole GA (2008) Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulm Pharmacol Ther 21(4):595–599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Sastre M, Pastor M, Esquisabel A et al (2016) Pulmonary delivery of tobramycin-loaded nanostructured lipid carriers for Pseudomonas aeruginosa infections associated with cystic fibrosis. Int J Pharm 498(1–2):263–273

    CAS  PubMed  Google Scholar 

  • Muralidharan P, Hayes D Jr, Black SM, Mansour HM (2016) Microparticulate/nanoparticulate powders of a novel Nrf2 activator and an aerosol performance enhancer for pulmonary delivery targeting the lung Nrf2/Keap-1 pathway. Mol Syst Des Eng 1(1):48–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murdoch JR, Lloyd CM (2010) Chronic inflammation and asthma. Mutat Res 690(1–2):24–39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naikwade SR, Bajaj AN, Gurav P, Gatne MM, Singh Soni P (2009) Development of budesonide microparticles using spray-drying technology for pulmonary administration: design, characterization, in vitro evaluation, and in vivo efficacy study. AAPS PharmSciTech 10(3):993–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura K, Matsubara H, Akagi S et al (2017) Nanoparticle-mediated drug delivery system for pulmonary arterial hypertension. J Clin Med 6(5)

  • Nelsen LM, Kimel M, Murray LT et al (2017) Qualitative evaluation of the St George’s respiratory questionnaire in patients with severe asthma. Respir Med 126:32–38

    PubMed  Google Scholar 

  • Nguyen MM, Carlini AS, Chien MP et al (2015) Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction. Adv Mater 27(37):5547–5552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK, Prasad B (2003) Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother 52(6):981–986

    CAS  PubMed  Google Scholar 

  • Paranjpe M, Müller-Goymann CC (2014) Nanoparticle-mediated pulmonary drug delivery: a review. Int J Mol Sci 15(4):5852–5873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pascual RM, Peters SP (2005) Airway remodeling contributes to the progressive loss of lung function in asthma: an overview. J Allergy Clin Immunol 116(3):477–486; quiz 487

    PubMed  Google Scholar 

  • Patil-Gadhe, Kyadarkunte, Patole, Pokharkar et al (2014) Montelukast-loaded nanostructured lipid carriers: part II pulmonary drug delivery and in vitro-in vivo aerosol performance. Eur J Pharm Biopharm 88(1):169–77

  • Patil-Gadhe, Pokharkar (2014) Montelukast-loaded nanostructured lipid carriers: part I oral bioavailability improvement. Eur J Pharm Biopharm 88(1):160–8

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    CAS  PubMed  Google Scholar 

  • Peters SP, Ferguson G, Deniz Y, Reisner C (2006) Uncontrolled asthma: a review of the prevalence, disease burden and options for treatment. Respir Med 100(7):1139–1151

    PubMed  Google Scholar 

  • Raissy HH, Kelly HW, Harkins M, Szefler SJ (2013) Inhaled corticosteroids in lung diseases. Am J Respir Crit Care Med 187(8):798–803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rangger C, Helbok A, Sosabowski J et al (2013) Tumor targeting and imaging with dual-peptide conjugated multifunctional liposomal nanoparticles. Int J Nanomedicine 8:4659–4671

    PubMed  PubMed Central  Google Scholar 

  • Ratjen F, Brockhaus F, Angyalosi G (2009) Aminoglycoside therapy against Pseudomonas aeruginosa in cystic fibrosis: a review. J Cyst Fibros 8(6):361–369

    CAS  PubMed  Google Scholar 

  • Riordan JR, Rommens JM, Kerem B et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245(4922):1066–1073

    CAS  PubMed  Google Scholar 

  • Roulet A, Armand L, Dagouassat M et al (2012) Intratracheally administered titanium dioxide or carbon black nanoparticles do not aggravate elastase-induced pulmonary emphysema in rats. BMC Pulm Med 12:38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rudolph C, Lausier J, Naundorf S, Müller RH, Rosenecker J (2000) In vivo gene delivery to the lung using polyethylenimine and fractured polyamidoamine dendrimers. J Gene Med 2(4):269–278

    CAS  PubMed  Google Scholar 

  • Sadeghi L, Yousefi Babadi V, Espanani HR (2015) Toxic effects of the Fe2O3 nanoparticles on the liver and lung tissue. Bratisl Lek Listy 116(6):373–378

    CAS  PubMed  Google Scholar 

  • Salem AK (2014) A promising CpG adjuvant-loaded nanoparticle-based vaccine for treatment of dust mite allergies. Immunotherapy 6(11):1161–1163

    CAS  PubMed  Google Scholar 

  • Salmaso S, Caliceti P (2013) Stealth properties to improve therapeutic efficacy of drug nanocarriers. J Drug Deliv 2013:374252

    PubMed  PubMed Central  Google Scholar 

  • Sanders N, Rudolph C, Braeckmans K, De Smedt SC, Demeester J (2009) Extracellular barriers in respiratory gene therapy. Adv Drug Deliv Rev 61(2):115–127

    CAS  PubMed  Google Scholar 

  • Schneider CS, Xu Q, Boylan NJ et al (2017) Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci Adv 3(4):e1601556

    PubMed  PubMed Central  Google Scholar 

  • Sharma K, Somavarapu S, Colombani A, Govind N, Taylor KM (2013) Nebulised siRNA encapsulated crosslinked chitosan nanoparticles for pulmonary delivery. Int J Pharm 455(1–2):241–247

    CAS  PubMed  Google Scholar 

  • Shinoda K, Hirahara K, Nakayama T (2017) Maintenance of pathogenic Th2 cells in allergic disorders. Allergol Int 66(3):369–376

    CAS  PubMed  Google Scholar 

  • Silva LH, da Silva JR, Ferreira GA et al (2016) Labeling mesenchymal cells with DMSA-coated gold and iron oxide nanoparticles: assessment of biocompatibility and potential applications. J Nanobiotechnol 14(1):59

    Google Scholar 

  • Stocke NA, Arnold SM, Hilt JZ (2015) Responsive hydrogel nanoparticles for pulmonary delivery. J Drug Deliv Sci Technol 29:143–151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suk JS, Lai SK, Wang YY et al (2009) The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles. Biomaterials 30(13):2591–2597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uddin MJ, Werfel TA, Crews BC et al (2016) Fluorocoxib A loaded nanoparticles enable targeted visualization of cyclooxygenase-2 in inflammation and cancer. Biomaterials 92:71–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Rijt SH, Bein T, Meiners S (2014) Medical nanoparticles for next generation drug delivery to the lungs. Eur Respir J 44(3):765–774

    PubMed  Google Scholar 

  • Vestbo J, Hurd SS, Agustí AG et al (2013) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 187(4):347–365

    CAS  PubMed  Google Scholar 

  • Vij N (2011) Nano-based theranostics for chronic obstructive lung diseases: challenges and therapeutic potential. Expert Opin Drug Deliv 8(9):1105–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wacker M (2013) Nanocarriers for intravenous injection—the long hard road to the market. Int J Pharm 457(1):50–62

    CAS  PubMed  Google Scholar 

  • Wahajuddin, Arora S (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 7:3445–3471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Ben-Jebria A, Edwards DA (1999) Inhalation of estradiol for sustained systemic delivery. J Aerosol Med 12(1):27–36

    CAS  PubMed  Google Scholar 

  • Wang J, Chen Y, Chen B et al (2010) Pharmacokinetic parameters and tissue distribution of magnetic Fe(3)O(4) nanoparticles in mice. Int J Nanomedicine 5:861–866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Zhu R, Xie Q et al (2012) Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int J Nanomedicine 7:3667–3677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie J, Huang J, Li X, Sun S, Chen X (2009) Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem 16(10):1278–1294

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Marcos Morales.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests. This study was supported by the Brazilian Council for Scientific and Technological Development (CNPq), the Rio de Janeiro State Research Foundation (FAPERJ), the Coordination for the Improvement of Higher Education Personnel (CAPES), and the Department of Science and Technology, Brazilian Ministry of Health (DECIT/MS).

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

The original version of this article was revised: The original version of this article unfortunately contains an error. The third author’s name “Patricia Rieken Macedo Rocco” was incorrectly spelled with “Roccco”. The correct author name is now presented in the authorgroup.

This article is part of a Special Issue on ‘Latin America’ edited by Pietro Ciancaglini and Rosangela Itri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, A.L., Cruz, F.F., Rocco, P.R.M. et al. New perspectives in nanotherapeutics for chronic respiratory diseases. Biophys Rev 9, 793–803 (2017). https://doi.org/10.1007/s12551-017-0319-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-017-0319-x

Keywords

Navigation