Skip to main content
Log in

Numerical study of anisotropic failure in wood under large deformation

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Brittle fracture mechanisms, characterizing wood behavior, are investigated numerically with the help of the smeared-crack approach combined with a multi-surface plasticity model. Numerical instabilities, accompanying the significant strain-softening behavior, are treated by using both a localization limiter and viscous regularization. In addition, extension of the model to large deformation conditions is proposed based on an objective stress rate using the rotation of wood fibers. Computations are carried out to predict the load carrying capacity and the post-cracking behavior of wood members under compression, bending and buckling, respectively. Competition between the multiple fracture processes is also analyzed from the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ashby MF, Easterling K, Harrysson R et al (1985) The fracture and toughness of woods. Proc R Soc Lond A 398:261–280

    Article  Google Scholar 

  2. Bazant ZP, Oh BH (1983) Crack band theory for fracture concrete. Mater Struct 16:155–177

    Google Scholar 

  3. Benabou L (2008) Kink band formation in wood species under compressive loading. Exp Mech 48:647–656

    Article  Google Scholar 

  4. Benabou L (2010) Predictions of compressive strength and kink band orientation for wood species. Mech Mater 42:335–343

    Article  Google Scholar 

  5. Benabou L (2012) Finite Strain analysis of wood species under compressive failure due to kinking. Int J Solids Struct 49:408–419

    Article  Google Scholar 

  6. Benallal A, Billardon R, Lemaître J (1991) Continuum damage mechanics and local approach to fracture: numerical procedures. Comput Methods Appl Mech Eng 92:141–155

    Article  MATH  Google Scholar 

  7. Boisse P, Gasser A, Hagege B et al (2005) Analysis of the mechanical behavior of woven fibrous material using virtual tests at the unit cell level. J Mater Sci 40:5955–5962

    Article  Google Scholar 

  8. Crisfield MA (1997) Non-linear finite element analysis of solids and structures, vol. 2., Advanced topicsWiley, New York

    Google Scholar 

  9. Daudeville L (1999) Fracture in spruce: experiment and numerical analysis by linear and non linear fracture mechanics. Holz Roh Werkst 57:425–432

    Article  Google Scholar 

  10. Dourado N, Morel S, de Moura MFSF, Valentin G, Morais J (2008) Comparison of fracture properties of two wood species through cohesive crack simulations. Composites Part A 39:415–427

    Article  Google Scholar 

  11. Duvaut G, Lions JL (1972) Les inéquations en Mécanique et en Physique. Dunod, Paris

    MATH  Google Scholar 

  12. Hagege B, Boisse P, Billoet JL (2005) Finite element analyses of knitted composite reinforcement at large strain. Eur J Comput Mech 14:767–776

    MATH  Google Scholar 

  13. Hanhijarvi A, Helnwein P, Ranta-Maunus A (2001) Two-dimensional material model for structural analysis of drying wood as viscoelastic-mechanosorptive-plastic material. In: 3rd workshop on Softwood drying to specific end-uses, COST ACTION E15, Espoo, Finland

  14. Hillerborg A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773–782

    Article  Google Scholar 

  15. Hughes TJR, Winget J (1980) Finite rotation effects in numerical integration of rate constitutive equations arising in large deformation analysis. Int J Numer Methods Eng 15:1862–1867

    Article  MATH  MathSciNet  Google Scholar 

  16. Loret B, Prevost JH (1990) Dynamic strain localization in elasto-(visco-)plastic solids, part 1. General formulation and one-dimensional examples. Comput Methods Appl Mech Eng 83:247–273

    Article  MATH  Google Scholar 

  17. Lucena-Simon J, Kröplin BH, Dill-Langer G et al (2000) A fictitious crack approach for the anisotropic degradation of wood. In: Proceedings of the international conference on wood and wood fiber composites, Stuttgart, pp 229–240

  18. Mackenzie-Helnwein P, Eberhardsteiner J, Mang HA (2003) A multi-surface plasticity model for clear wood and its application to the finite element analysis of structural details. Comput Mech 31:204–218

    Article  MATH  Google Scholar 

  19. Ohmenhäuser F, Weihe S, Kröplin B (1999) Algorithmic implementation of a generalized cohesive crack model. Comput Mater Sci 16:294–306

    Article  Google Scholar 

  20. Oliver J (1989) A consistent characteristic length for smeared cracking models. Int J Numer Methods Eng 28:461–474

    Article  MATH  Google Scholar 

  21. O’Loinsigh C, Oudjene M, Shotton E, Pizzi A, Fanning P (2012) Mechanical behaviour and 3D stress analysis of multi-layered wooden beams made with welded-through wood dowels. Compos Struct 94:313–321

    Article  Google Scholar 

  22. Perzyna P (1971) Thermodynamic theory of viscoplasticity. Adv Appl Mech 11:313–354

    Article  Google Scholar 

  23. Pietruszczak S, Mroz Z (1981) Finite element analysis of deformation of strain-softening materials. Int J Numer Methods Eng 17:327–334

    Article  MATH  Google Scholar 

  24. Poulsen JS, Moran PM, Shih CF et al (1997) Kink band initiation and band broadening in clear wood under compressive loading. Mech Mater 25:67–77

    Article  Google Scholar 

  25. Reiterer A, Tschegg S (2002) The influence of moisture content on the mode I fracture behaviour of sprucewood. J Mater Sci 37:4487–4491

    Article  Google Scholar 

  26. Rots JG, De Borst R (1987) Analysis of mixed-mode fracture in concrete. J Eng Mech-ASCE 113:1739–1758

    Article  Google Scholar 

  27. Saft S, Kaliske M (2011) Numerical simulation of the ductile failure of mechanically and moisture loaded wooden structures. Comput Struct 89:2460–2470

    Article  Google Scholar 

  28. Sandhaas C, Van de Kuilen JW, Blass HJ (2012) Constitutive model for wood based on continuum damage mechanics. In: WCTE 2012, World conference on timber engineering, Auckland

  29. Schmidt J, Kaliske M (2009) Models for numerical failure analysis of wooden structures. Eng Struct 31:571–579

    Article  Google Scholar 

  30. Sih GC, Paris PC, Irwin GR (1965) On cracks in rectilinearly anisotropic bodies. Int J Fract Mech 1:189–203

    Google Scholar 

  31. Simo JC, Kennedy JG, Govindjee S (1988) Non-smooth multisurface plasticity and viscoplasticity: loading/unloading conditions and numerical algorithms. Int J Numer Methods Eng 26:2161–2185

    Article  MATH  MathSciNet  Google Scholar 

  32. Triboulot P, Jodin P, Pluvinage G (1984) Validity of fracture mechanics concepts applied to wood by finite element calculation. Wood Sci Technol 18:51–58

    Article  Google Scholar 

  33. Vasic S, Smith I, Landis E (2005) Finite element techniques and models for wood fracture mechanics. Wood Sci Technol 39:3–17

    Article  Google Scholar 

  34. Weihe S, Kröplin B, De Borst R (1998) Classification of smeared crack models based on material and structural properties. Int J Solids Struct 35:1289–1308

    Article  MATH  Google Scholar 

  35. Xu BH, Bouchaïr A, Taazount M, Vega EJ (2009) Numerical and experimental analysis of multiple-dowel steel-to-timber joints in tension perpendicular to grain. Eng Struct 31:2357–2367

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Benabou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benabou, L., Sun, Z. Numerical study of anisotropic failure in wood under large deformation. Mater Struct 48, 1977–1993 (2015). https://doi.org/10.1617/s11527-014-0287-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0287-6

Keywords

Navigation