Skip to main content
Log in

Finite element techniques and models for wood fracture mechanics

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Numerical models for wood fracture and failure are commonly based on the finite element method. Most of these models originate from general theoretical considerations for other materials. This limits their usefulness because no amount of complexity in a model can substitute for lack of an appropriate representation of the physical mechanisms involved. As for other materials, wood fracture and failure models always require some degree of experimental calibration, which can introduce ambiguity into numerical predictions because at present there is a high degree of inconsistency in test methods. This paper explores avenues toward achieving models for wood fracture that are both appropriate and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aicher SM, Schmidt S, Brunold S (1995) Design of timber beams with holes by means of fracture mechanics. Proceedings of the international council for research and innovation in construction—working commission W18 (CIB-W18), meeting 28, Copenhagen, Denmark

  • Aliabadi MH, Rooke DP (1993) Advances in boundary element methods for fracture mechanics. Series: computational mechanics. Wessex Institute of Technology, Southampton, UK

  • An D (1987) Weight function theory for rectilinear anisotropic body. Int J Fract 34:85–109

    Article  Google Scholar 

  • Atluri SN, Kobayashi AS, Nakagaki M (1975) A finite element program for fracture analysis of composite material. In: Fracture mechanics of composites. ASTM STP 593, Philadelphia, PA

  • Bao G, Suo Z (1992) Remarks on crack-bridging concepts. Appl Mech Rev ASME 45(8):355–366

    Google Scholar 

  • Barsoum RS (1975) Application of quadratic isoparametric finite elements in linear fracture mechanics. Int J Fract 10:603–605

    Article  Google Scholar 

  • Barsoum RS (1976) On the use of isoparametric finite elements in linear fracture mechanics. Int J Numer Methods Eng 10:25–37

    Google Scholar 

  • Bathe KJ (1996) Finite element procedures. Prentice Hall, New Jersey, USA

    Google Scholar 

  • Bazant ZP, Planas J (1998) Fracture and size effect in concrete and other quasibrittle materials. CRC Press, Boca Raton

    Google Scholar 

  • Bodig J, Jayne BA (1982) Mechanics of wood and wood composites. Van Nostrand Reinhold, New York

    Google Scholar 

  • Boone TJ, Wawrzynek PA, Ingraffea AR (1987) Finite element modelling of fracture propagation in orthotropic materials. Eng Fract Mech 26(2):185–201

    Article  Google Scholar 

  • Bostrom L (1992) Method for determination of the softening behaviour of wood and applicability of a non-linear fracture mechanics model. Lund University, TVBM-1012, Lund, Sweden

  • Bowie OL, Freese CE (1972) Central crack in plane orthotropic rectangular sheet. Int J Fract Mech 8(1):49–58

    Google Scholar 

  • Brabia CA (1978) The boundary element for engineers. Pentech Press, London

    Google Scholar 

  • Cook RD (1995) Concepts and applications of finite element analysis. Wiley & Sons, New York, pp 336

    Google Scholar 

  • Curtin W, Scher H (1990) Brittle fracture of disordered materials: a spring network model. J Mater Res 5(3):535–553

    CAS  Google Scholar 

  • Davids WG, Landis EN, Vasic S (2003) Lattice models for the prediction of load-induced failure and damage in wood. Wood Fiber Sci 35(1):120–135

    CAS  Google Scholar 

  • Foschi RO, Barrett JD (1976) Stress intensity factors in anisotropic plates using singular isoparametric elements. Int J Numer Mech Eng 10(6):1281–1287

    Google Scholar 

  • Henshell RD, Shaw KG (1975) Crack tip finite elements are unnecessary. Int J Numer Methods Eng 9(3):495–507

    Google Scholar 

  • Herrmann HJ, Roux S (1990) Statistical models for the fracture of disordered media. North Holland, Amsterdam

    Google Scholar 

  • Hillerborg A, Modeer M, Petterson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773–782

    Article  Google Scholar 

  • Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364

    Google Scholar 

  • Irwin GR (1958) Fracture. In Handbuch der Physik, vol VI. Springer, Berlin Heidelberg New York

  • Jirasek M, Bazant Z (1995) Macroscopic fracture characteristics of random particle systems. Int J Fract 69:201–228

    Article  Google Scholar 

  • Kanninen MF, Rybicki EF, Brinson HF (1977) A critical look at current applications of fracture mechanics to the failure of fibre-reinforced composites. Composites 8:17–22

    Article  CAS  Google Scholar 

  • Landis EN, Vasic S, Davids WG, Parrod P (2002) Coupled experiments and simulations of microstructural damage in wood. Exper Mech 42(4):389–394

    Article  Google Scholar 

  • Li YN, Liang RY (1994) Peak load determination in linear fictitious crack model. J Eng Mech ASME 120(2):232–249

    Google Scholar 

  • Lum C, Foschi RO (1988) Arbitrary V-notches in orthotropic plates. ASCE J Eng Mech 114(4):638–655

    Google Scholar 

  • Rice RJ (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 6:379–386

    Google Scholar 

  • Rots JG, de Borst R (1988) Analysis of mixed-mode fracture of concrete. ASCE J Eng Mech 113(11):1739–1758

    Google Scholar 

  • Saouma V, Cervenka J, Reich R (1994) MERLIN finite element program. University of Colorado, http://www.ceae.colorado.edu/~saouma/merlin. Cited 11 November 2004

  • Saouma VE, Schwemmer D (1984) Numerical evaluation of the quarter-point crack tip element. Int J Numer Methods Eng 20:1629–1641

    Google Scholar 

  • Schlangen E (1995) Experimental and numerical analysis of fracture processes in concrete. Research report, Technical University of Delft, Delft, The Netherlands

  • Schlangen E, Garboczi E (1996) New method for simulating fracture using an elastically uniform random geometry lattice. Int J Eng Sci 34(10):1131–1144

    Article  Google Scholar 

  • Schlangen E, Garboczi E (1997) Fracture simulations of concrete using lattice models: computational aspects. Eng Fract Mech 57(2/3):319–332

    Article  Google Scholar 

  • Sha GT, Yang CT (1985) Weight function calculations for mixed-mode fracture problems with the virtual crack extension technique. Eng Fract Mech 21(6):1119–1149

    Google Scholar 

  • Sha GT, Chen JK, Yang CT (1988) Energy perturbation finite element technique for damage tolerant design applications. Eng Fract Mech 29(2):197–218

    Article  Google Scholar 

  • Sih GC, Paris PC, Irwin GR (1965) On cracks in rectilinear anisotropic bodies. Int J Fract 1:189–203

    Article  CAS  Google Scholar 

  • Smith I, Vasic S (2003) Fracture behaviour of softwood. Mech Mater 35:803–815

    Article  Google Scholar 

  • Smith I, Tan DM, Chui YH (1996) Critical reaction forces for notched timber members. Proceedings of the international wood engineering conference, New Orleans, Louisiana State University, Baton Rouge, USA, pp 3460–3471

  • Smith I, Landis E, Gong M (2003) Fracture and fatigue in wood. Wiley, Chichester, UK

    Google Scholar 

  • Stanzl-Tschegg SE, Tan DM, Tschegg EK (1995) New splitting method for wood fracture characterization. Wood Sci Technol 29:31–50

    Article  CAS  Google Scholar 

  • Valentin G, Adjanohoun G (1992) Applicability of classical isotropic fracture mechanics specimens to wood crack propagation studies. Mater Struct 25:3–13

    Google Scholar 

  • Vasic S (2000) Applications of fracture mechanics to wood. PhD Thesis, University of New Brunswick, Fredericton, NB, Canada

  • Vasic S, Smith I (2000) Non-linear fracture mechanics analysis of thickness effect in green wood. Proceedings of the world conference of timber engineering 2000, Whistler, Canada, July 31–August 3

  • Vasic S, Smith I (2002) Bridging crack model for fracture of spruce. Eng Fract Mech 69:745–760

    Article  Google Scholar 

  • Vasic S, Smith I (2003) Contact-crack problem with friction in spruce. Holz Roh Werkst 61:182–186

    Google Scholar 

  • Vasic S, Smith I, Landis EN (2002) Fracture zone characterization—micro- mechanical study. Wood Fiber Sci 34(1):42–56

    CAS  Google Scholar 

  • Wawrzynek PA, Ingraffea AR (1985) FRANC software. Cornell University, http://www.cfg.cornell.edu. Cited 11 November 2004

  • Wernersson H (1990) Fracture characterization of wood adhesive joints. Report TVSM-1006, Lund University, Division of Structural Mechanics, Lund, Sweden

  • Yamaguchi E, Chen WF (1990) Cracking model for finite element analysis of concrete materials. ASCE J Eng Mech 116(6):1242–1260

    Google Scholar 

  • Zienkiewicz OC, Taylor RL (1988) The finite element method: vol 1 - basic formulation and linear problems. McGraw Hill, London

    Google Scholar 

  • Zienkiewicz OC, Taylor RL (1989) The finite element method: vol 2, solid and fluid mechanics, dynamics and non-linearity. McGraw Hill, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Vasic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasic, S., Smith, I. & Landis, E. Finite element techniques and models for wood fracture mechanics. Wood Sci Technol 39, 3–17 (2005). https://doi.org/10.1007/s00226-004-0255-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-004-0255-3

Keywords

Navigation