Skip to main content
Log in

Phase noise-induced coherence resonance in three dimension memristive Hindmarsh-Rose neuron model

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Phase noise derives from the phase random variation of signal in many physical or biological systems. Based on a three dimension memristive Hindmarsh-Rose neuron model, the influences of phase noise on the neural dynamic features are studied here. It is found that phase noise (an applied voltage source in the flux-controlled memristor) can induce the different hysteresis loops, and the strong phase noise can destroy the memory characteristic of the memristor. The amplitude, angular frequency and noise intensity of phase noise can obviously make the dynamic modes undergo successive transitions. The coherence resonance is related to the angular frequency of phase noise, and is a common phenomenon that persists for the amplitude of phase noise. These results might provide a possible mechanism behind the resonance phenomenon in nonlinear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Gonzalez-Miranda, Commun. Nonlinear. Sci. 19, 3229 (2014)

    Article  MathSciNet  Google Scholar 

  2. P.G. Ghomsi, F.M.M. Kakmeni, T.C. Kofane, C. Tchawoua, Phys. Lett. A 78, 2813 (2014)

    Article  ADS  Google Scholar 

  3. B. Cessac, M. Samuelides, Eur. Biophys. J. 142, 7 (2007)

    Google Scholar 

  4. Y. Xu, Y. Jia, J. Ma, H. Tasawar, A. Ahmed, Sci. Rep. 8, 1349 (2018)

    Article  ADS  Google Scholar 

  5. E. Yilmaz, V. Baysal, M. Perc, M. Ozer, Sci. China Technol. Sci. 59, 364 (2016)

    Article  Google Scholar 

  6. Y. Xu, Y. Jia, J.B. Kirunda, J. Shen, M. Ge, L. Lu, Q. Pei, Complexity 2018, 3012743 (2018)

    Google Scholar 

  7. O. Mahmut, P. Matjaz, U. Muhammet, K. Etem, NeuroReport 21, 338 (2010)

    Article  Google Scholar 

  8. L. Lu, Y. Jia, J.B. Kirunda, Y. Xu, M. Ge, Q. Pei, L. Yang, Nonlinear Dyn. 95, 1673 (2019)

    Article  Google Scholar 

  9. B. Veli, Y. Ergin, O. Mahmut, IEEE 17, 3081 (2017)

    Google Scholar 

  10. Y. Xu, Y. Jia, H. Wang, Y. Liu, P. Wang, Y. Zhao, Nonlinear Dyn. 95, 3237 (2019)

    Article  Google Scholar 

  11. L.L. Lu, Y. Jia, Y. Xu, M.Y. Ge, L.J. Yang, X. Zhan, Sci. China Technol. Sci. 62, 427 (2019)

    Article  Google Scholar 

  12. E. Yilmaz, V. Baysal, O. Mahmut, P. Matjaz, Physica A 444, 538 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Ge, Y. Jia, J.B. Kirunda, Y. Xu, J. Shen, L. Lu, Y. Liu, Q. Pei, X. Zhan, L. Yang, Neurocomputing 320, 60 (2018)

    Article  Google Scholar 

  14. M. Ge, Y. Jia, Y. Xu, L. Lu, H. Wang, Y. Zhao, Appl. Math. Comput. 352, 136 (2019)

    MathSciNet  Google Scholar 

  15. R. Roger, L. Petr, Phys. Rev. E 62, 8427 (2000)

    Article  ADS  Google Scholar 

  16. L. Lu, Y. Jia, W. Liu, L. Yang, Complexity 2017, 7628537 (2017)

    Google Scholar 

  17. M. Ge, Y. Jia, Y. Xu, L. Yang, Nonlinear Dyn. 91, 515 (2018)

    Article  Google Scholar 

  18. Y.B. Jia, H.G. Gu, Chaos 25, 123124 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. X.M. Liang, D. Mukeshwar, L. Zhao, Z.H. Liu, Phys. Rev. E 82, 010902 (2010)

    Article  ADS  Google Scholar 

  20. F.G. Wu, C.H. Wang, W.Y. Jin, J. Ma, Physica A 469, 81 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. X.M. Liang, L. Zhao, Phys. Rev. E 24, 1339 (2013)

    Google Scholar 

  22. X.Q. Liu, X.L. Yang, Int. J. Mod. Phys. B 32, 1850332 (2018)

    Article  ADS  Google Scholar 

  23. L. Yang, W. Liu, M. Yi, C. Wang, Q. Zhu, X. Zhan, Y. Jia, Phys. Rev. E 86, 016209 (2012)

    Article  ADS  Google Scholar 

  24. D. Alper, M. Amit, R. Jaijeet, IEEE 47, 655 (2000)

    Google Scholar 

  25. R. Behzad, IEEE 31, 331 (2002)

    Google Scholar 

  26. L. Chua, IEEE 18, 507 (1971)

    Google Scholar 

  27. C. Andre, G. Vincent, O.C. Ryan, B. Karim, F. Stephane, M. Xavier, X. Stephane, Y. Hiroyuki, D. Cyrile, D.M. Neil, B. Manuel, B. Agnes, G. Julie, Nat. Mater. 11, 860 (2012)

    Article  Google Scholar 

  28. L. Chua, Nanotechnology 24, 383001 (2013)

    Article  ADS  Google Scholar 

  29. S.F. Mohammad, A. Arash, Neural Process. Lett. 45, 1 (2016)

    Google Scholar 

  30. Z.G. Wang, J. Saumil, Nat. Mater. 16, 101 (2016)

    Article  ADS  Google Scholar 

  31. M.H. Almoatazbellah, M.S. Noha, G.R. Ahmed, Phys. Rev. E 25, 1530017 (2015)

    Google Scholar 

  32. T. Andy, J. Phys. D 46, 093001 (2013)

    Article  Google Scholar 

  33. B. Yunus, K. Firat, G. Koray, Neurocomputing 203, 86 (2016)

    Article  Google Scholar 

  34. B.S. Dmitri, S.S. Gregory, R.S. Duncan, R.S. Williams, Nature 453, 06932 (2008)

    Google Scholar 

  35. K. Eva, Fract. Calc, Appl. Anal. 20, 623 (2017)

    Google Scholar 

  36. J.L. Hindmarsh, R.M. Rose, Nature 296, 162 (1982)

    Article  ADS  Google Scholar 

  37. B.C. Bao, A.H. Hu, H. Bao, Q. Xu, M. Chen, H.G. Wu, Complexity 2018, 3872573 (2018)

    Google Scholar 

  38. X.M. Liang, L. Zhao, Z.H. Liu, Phys. Rev. E 84, 031916 (2011)

    Article  ADS  Google Scholar 

  39. L. Chua, Appl. Phys. A 102, 765 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Bao, C., Ge, M. et al. Phase noise-induced coherence resonance in three dimension memristive Hindmarsh-Rose neuron model. Eur. Phys. J. Spec. Top. 228, 2101–2110 (2019). https://doi.org/10.1140/epjst/e2019-900011-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-900011-1

Navigation