Skip to main content
Log in

Enhancement of pacemaker induced stochastic resonance by an autapse in a scale-free neuronal network

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

An autapse is an unusual synapse that occurs between the axon and the soma of the same neuron. Mathematically, it can be described as a self-delayed feedback loop that is defined by a specific time-delay and the so-called autaptic coupling strength. Recently, the role and function of autapses within the nervous system has been studied extensively. Here, we extend the scope of theoretical research by investigating the effects of an autapse on the transmission of a weak localized pacemaker activity in a scale-free neuronal network. Our results reveal that by mediating the spiking activity of the pacemaker neuron, an autapse increases the propagation of its rhythm across the whole network, if only the autaptic time delay and the autaptic coupling strength are properly adjusted. We show that the autapse-induced enhancement of the transmission of pacemaker activity occurs only when the autaptic time delay is close to an integer multiple of the intrinsic oscillation time of the neurons that form the network. In particular, we demonstrate the emergence of multiple resonances involving the weak signal, the intrinsic oscillations, and the time scale that is dictated by the autapse. Interestingly, we also show that the enhancement of the pacemaker rhythm across the network is the strongest if the degree of the pacemaker neuron is lowest. This is because the dissipation of the localized rhythm is contained to the few directly linked neurons, and only afterwards, through the secondary neurons, it propagates further. If the pacemaker neuron has a high degree, then its rhythm is simply too weak to excite all the neighboring neurons, and propagation therefore fails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gammaitoni L, Hänggi P, Jung P, et al. Stochastic resonance. Rev Modern Phys, 1998, 70: 223–287

    Article  Google Scholar 

  2. Hänggi P. Stochastic resonance in biology. ChemPhysChem, 2002, 3: 285–290

    Article  Google Scholar 

  3. Wiesenfeld K, Moss F. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature, 1995, 373: 33–36

    Article  Google Scholar 

  4. Longtin A. Stochastic resonance in neuron models. J Stat Phys, 1993, 70: 309–327

    Article  MATH  Google Scholar 

  5. McNamara B, Wiesenfeld K. Theory of stochastic resonance. Phys Rev A, 1989, 39: 4854–4869

    Article  Google Scholar 

  6. Pakdaman K, Tanabe S, Shimokawa T. Coherence resonance and discharge time reliability in neurons and neuronal model. Neural Netw, 2001, 14: 895–905

    Article  Google Scholar 

  7. Pikovsky A S, Kurths J. Coherence resonance in a noise-driven excitable system. Phys Rev Lett, 1997, 78: 775–778

    Article  MathSciNet  MATH  Google Scholar 

  8. Longtin A. Autonomous stochastic resonance in bursting neurons. Phys Rev E, 1997, 55: 868–876

    Article  Google Scholar 

  9. Lindner B, Schimansky-Geier L. Analytical approach to the stochastic FitzHugh-Nagumo system and coherence resonance. Phys Rev E, 1999, 60: 7270–7276

    Article  Google Scholar 

  10. Brunel N, Hansel D. How noise affects the synchronization properties of recurrent networks of inhibitory neurons. Neural Comput, 2006, 18: 1066–1110

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhou C, Kurths J. Noise-induced synchronization and coherence resonance of a Hodgkin–Huxley model of thermally sensitive neurons. Chaos, 2003, 13: 401–409

    Article  Google Scholar 

  12. Rulkov N F, Suschik M M, Tsimring L S, et al. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys Rev E, 1995, 51: 980–994

    Article  Google Scholar 

  13. Rosenblum M G, Pikovsky A S, Kurths J. Phase synchronization of chaotic oscillators. Phys Rev Lett, 1996, 76: 1804–1807

    Article  MATH  Google Scholar 

  14. Huang X Y, Xu W F, Liang J M, et al. Spiral wave dynamics in neocortex. Neuron, 2010, 68: 978–990

    Article  Google Scholar 

  15. Huang X Y, Troy W C, Yang Q, et al. Spiral waves in disinhibited mammalian neocortex. J Neurosci, 2004, 24: 9897–9902

    Article  Google Scholar 

  16. Ma J, Wu Y, Ying H P, et al. Channel noise-induced phase transition of spiral wave in networks of Hodgkin-Huxley neurons. Chin Sci Bull, 2011, 56: 151–157

    Article  Google Scholar 

  17. Ma J, Wang C N, Jin W Y, et al. Transition from spiral wave to target wave and other coherent structures in the networks of Hodgkin–Huxley neurons. Appl Math Comput, 2010, 217: 3844–3852

    Article  MathSciNet  MATH  Google Scholar 

  18. Hille B. Ionic channels in nerve membranes. Prog Biophys Mol Biol, 1970, 21: 1–32

    Article  Google Scholar 

  19. White J A, Rubinstein J T, Kay A R. Channel noise in neurons. Trends Neurosci, 2000, 23: 131–137

    Article  Google Scholar 

  20. Schneidman E, Freedman B, Segev I. Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comput, 1998, 10: 1679–1703

    Article  Google Scholar 

  21. Hänggi P, Schmid G, Goychuk I. Excitable membranes: Channel noise, synchronization and stochastic resonance. Adv Solid State Phys, 2002, 42: 359–370

    Article  MATH  Google Scholar 

  22. Ozer M, Perc M, Uzuntarla M. Stochastic resonance on Newman–Watts networks of Hodgkin–Huxley neurons with local periodic driving. Phys Lett A, 2009, 373: 964–968

    Article  MATH  Google Scholar 

  23. Ozer M, Perc M, Uzuntarla M, et al. Weak signal propagation through noisy feedforward neuronal Networks. Neuroreport, 2010, 21: 338–343

    Article  Google Scholar 

  24. Ozer M, Perc M, Uzuntarla M. Controlling The spontaneous spiking regularity via channel blocking on newman-watts networks of hodgkin-huxley neurons. Euro Phys Lett, 2009, 86: 40008

    Article  MATH  Google Scholar 

  25. Ozer M, Uzuntarla M, Perc M, et al. Spike latency and jitter of neuronal membrane patches with stochastic hodgkin-huxley channels. J Theor Biol, 2009, 261:83–92

    Article  Google Scholar 

  26. Yilmaz E, Ozer M. Collective firing regularity of a scale-free Hodgkin–Huxley neuronal network in response to a subthreshold signal. Phys Lett A, 2013, 377: 1301–1307

    Article  MathSciNet  MATH  Google Scholar 

  27. Yilmaz E, Baysal V, Ozer M. Enhancement of temporal coherence via time-periodic coupling strength in a scale-free network of stochastic Hodgkin-Huxley neuron. Phys Lett A, 2015, 379: 1594–1599

    Article  Google Scholar 

  28. Sun X J, Shi X. Effects of channel blocks on the spiking regularity in clustered neuronal networks. Sci China Tech Sci, 2014, 57: 879–884

    Article  Google Scholar 

  29. Van der Loos H, Glaser E M. Autapses in neocortex cerebri: synapses between a pyramidal cell’s axon and its own dendrites. Brain Res, 1972, 48: 355–360

    Article  Google Scholar 

  30. Herrmann C S, Klaus A. Autapse turns neuron into oscillator. Int J Bifurcat Chaos, 2004, 14: 623–633

    Article  MathSciNet  MATH  Google Scholar 

  31. Park M R, Lighthall J W, Kitai S T. Recurrent inhibition in the rat neostriatum. Brain Res, 1980, 194: 359–369

    Article  Google Scholar 

  32. Preston R J, Bishop G A, Kitai S T. Medium spiny neuron projection from the rat striatum: An intracellular horseradish peroxidase study. Brain Res, 1980, 183: 253–263

    Article  Google Scholar 

  33. Karabelas A B, Purpura D P. Evidence for autapses in the substantia nigra. Brain Res, 1980, 200: 467–473

    Article  Google Scholar 

  34. Tamás G, Buhl E H, Somogyi P. Massive autaptic self-innervation of GABAergic neurons in cat visual cortex. J Neurosci, 1997, 17: 6352–6364

    Google Scholar 

  35. Lübke J, Markram H, Frotscher M, et al. Frequency and dendritic distribution of autapses established by layer 5 pyramidal neurons in the developing rat neocortex: Comparison with synaptic innervation of adjacent neurons of the same class. J Neurosci, 1996, 16: 3209–3218

    Google Scholar 

  36. Bacci A, Huguenard J R, Prince D A. Functional autaptic neurotransmission in fast-spiking interneurons: a novel form of feedback inhibition in the neocortex. J Neurosci, 2003, 23: 859–866

    Google Scholar 

  37. Süel G M, García-Ojalvo J, Liberman L M, et al. An excitable gene regulatory circuit induces transient cellular differentiation. Nature, 2006, 440: 545–550

    Article  Google Scholar 

  38. Cabrera J L, Milton J G. On-off intermittency in a human balancing task. Phys Rev Lett, 2002, 89: 158702

    Article  Google Scholar 

  39. Beta C, Bertram M, Mikhailov A S, et al. Controlling turbulence in a surface chemical reaction by time-delay autosynchronization. Phys Rev E, 2003, 67: 046224

    Article  Google Scholar 

  40. Sethia G C, Kurths J, Sen A. Coherence resonance in an excitable system with time delay. Phys Lett A, 2007, 364: 227–230

    Article  Google Scholar 

  41. Bacci A, Huguenard J R. Enhancement of spike-timing precision by autaptic transmission in neocortical inhibitory interneurons. Neuron, 2006, 49: 119–130

    Article  Google Scholar 

  42. Li Y, Schmid G, Hänggi P, et al. Spontaneous spiking in an autaptic Hodgkin-Huxley setup. Phys Rev E, 2010, 82: 061907

    Article  MathSciNet  Google Scholar 

  43. Connelly W M. Autaptic connections and synaptic depression constrain and promote gamma oscillations. PLoS One, 2014, 9: e89995

    Article  Google Scholar 

  44. Wang H, Ma J, Chen Y, et al. Effect of an autapse on the firing pattern transition in a bursting neuron. Commun Nonlinear Sci Numer Simulat, 2014, 19: 3242–3254

    Article  MathSciNet  Google Scholar 

  45. Wang H, Sun Y, Li Y, et al. Influence of autapse on mode-locking structure of a Hodgkin-Huxley neuron under sinusoidal stimulus. J Theor Biol, 2014, 358: 25–30

    Article  MathSciNet  Google Scholar 

  46. Liu H, Chapman E R, Dean C. “Self” versus “non-self” connectivity dictates properties of synaptic transmission and plasticity. PLoS One, 2013, 8: e62414

    Article  Google Scholar 

  47. Qin H X, Ma J, Wang C N, et al. Autapse-induced target wave, spiral wave in regular network of neurons. Sci China-Phys Mech Astron, 2014, 57: 1918–1926

    Article  Google Scholar 

  48. Ma J, Song X, Tang J, et al. Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing, 2015, 167: 378–389

    Article  Google Scholar 

  49. Ma J, Song X, Jin W, et al. Autapse-induced synchronization in a coupled neuronal Network. Chaos Soliton Fract, 2015, 80: 31–38

    Article  MathSciNet  Google Scholar 

  50. Yilmaz E, Ozer M. Delayed feedback and detection of weak periodic signals in a stochastic Hodgkin–Huxley neuron. Physica A, 2015, 421: 455–462

    Article  Google Scholar 

  51. Katz A M. Physiology of the Heart. Philadelphia: Kluwer, 2000

    Google Scholar 

  52. Perc M. Stochastic resonance on excitable small-world networks via a pacemaker. Phys Rev E, 2007, 76: 066203

    Article  Google Scholar 

  53. Perc M, Marhl M. Pacemaker enhanced noise-induced synchrony in cellular arrays. Phys Lett A, 2006, 353: 372–377

    Article  Google Scholar 

  54. Gan C B, Perc M, Wang Q Y. Delay-aided stochastic multi resonances on scale-free FitzHugh–Nagumo neuronal networks. Chin Phys B, 2010, 19: 040508

    Article  Google Scholar 

  55. Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952, 117: 500–544

    Article  Google Scholar 

  56. Fox R F. Stochastic versions of the Hodgkin-Huxley equations. Biophys J, 1997, 72: 2068–2074

    Article  Google Scholar 

  57. Barabasi A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286: 509–512

    Article  MathSciNet  MATH  Google Scholar 

  58. Yu H, Wang J, Sun J, et al. Effects of hybrid synapses on the vibrational resonance in small-world neuronal networks. Chaos, 2012, 22: 033105

    Article  MathSciNet  Google Scholar 

  59. Yilmaz E, Uzuntarla M, Ozer M, et al. Stochastic resonance in hybrid scale-free neuronal networks. Physica A, 2013, 392: 5735–5741

    Article  MathSciNet  Google Scholar 

  60. Yu Y, Wang W, Wang J F, et al. Resonance-enhanced signal detection and transduction in the Hodgkin-Huxley neuronal systems. Phys Rev E, 2001; 63: 021907

    Article  Google Scholar 

  61. Qin H X, Ma J, Jin W Y, et al. Dynamics of electric activities in neuron and neurons of network induced by autapses. Sci China Tech Sci, 2014, 57: 936–946.

    Article  Google Scholar 

  62. Song X L, Wang C N, Ma J, et al. Transition of electric activity of neurons induced by chemical and electric autapses. Sci China Tech Sci, 2015, 58: 1007–1014

    Article  Google Scholar 

  63. Yilmaz E, Baysal V, Ozer M, et al. Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks. Physica A, 2016, 444: 538–546

    Article  MathSciNet  Google Scholar 

  64. Li X, Wang J, Hu W. Effects of chemical synapses on the enhancement of signal. Phys Rev E, 2007, 76: 041902

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ergin Yilmaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, E., Baysal, V., Perc, M. et al. Enhancement of pacemaker induced stochastic resonance by an autapse in a scale-free neuronal network. Sci. China Technol. Sci. 59, 364–370 (2016). https://doi.org/10.1007/s11431-015-5984-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5984-z

Keywords

Navigation