Skip to main content

Advertisement

Log in

First-principles study on the electronic band profiles, structural, mechanical and thermoelectric properties of semiconducting MgSc2Te4 and MgY2Te4 Spinels

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

New materials for renewable energy applications (e.g., thermogenerators, solar cells, etc.) are crucial to explore. Spinel’s compounds have attracted great attention in recent years for their direct energy band gaps and high transition rates. Therefore, in the present research work, the structural parameters, elastic, and thermoelectric properties of magnesium-based spinel compounds MgB2Te4 (B = Sc, Y) have been investigated using density functional and Boltzmann transport theory. The elastic properties of these spinels are also explored for the first time. These compounds are elastically stable and brittle in characters. The mBJ + SOC band structure calculation shows that MgSc2Te4 and MgY2Te4 have semiconducting natures with a direct band gap. The calculated band gap values are 0.87 eV and 1.17 eV for MgSc2Te4 and MgY2Te4, respectively. Based on the Bader strategy, a deep analysis was conducted, showing that a global mixed ionic/covalent bonding appears in all studied materials that leads to drastic changes in their intrinsic properties. To characterize the thermoelectric behavior of these compounds, the BoltzTrap code is employed to evaluate the variations in the essential transport properties as a function of temperature and chemical potential. The obtained results highlight the significance of these two spinels for optical and thermoelectric applications. In the absence of experimental results, this work can be useful for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Birol, Int. Energy Agency 15, 75739 (2017)

    Google Scholar 

  2. G.S. Alemán, Renew. Sustain. Energy Rev. 32, 140–153 (2014)

    Article  Google Scholar 

  3. J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, Angew. Chem. Int. Ed. Engl. 48, 8616–8639 (2009)

    Article  Google Scholar 

  4. D. Kraemer, B. Poudel, H.P. Feng, J.C. Caylor, B. Yu, X. Yan, Nat. Mater. 10, 532–538 (2011)

    Article  ADS  Google Scholar 

  5. C.L. Pang, A.V. Gao, H. Chen, M.K. Bowman, N. Bao, L. Shen, A. Gupta, Chem. Mater. 30, 1701–1709 (2018)

    Article  Google Scholar 

  6. J.X. Deng, X. Yu, B. Qin, Y. Liu, F. Kang, Energy Storage Mater. 11, 184–190 (2018)

    Article  Google Scholar 

  7. T. Irifune, E. Fujino, K. Ohtani, Nature 6308, 349–409 (1991)

    Google Scholar 

  8. S.J. Lee, J.E. Kim, H.Y. Park, J. Mater. Res. 18, 733 (1991)

    Article  ADS  Google Scholar 

  9. A. Georgobiani, S. Radaustan, I. Tiginyanu, Sov. Phys. Semicond. 19, 19–121 (1985)

    Google Scholar 

  10. C.P. Sun, C.L. Huang, C.C. Lin, J.L. Her, C.J. Ho, J.-Y. Lin, H. Berger, H.D. Yang, Appl. Phys. Lett. 96, 122109 (2010)

    Article  ADS  Google Scholar 

  11. C.D. Santos, P.E. Ngoepe, N.H. de Leeuw, Phys. Rev. B. 97, 085126 (2018)

    Article  ADS  Google Scholar 

  12. P.F. Ndione, Y. Shi, V. Stevanovic, S. Lany, A. Zakutayev, P.A. Parilla, J.D. Perkins, J.J. Berry, D.S. Ginley, M.F. Toney, Adv. Func. Mater. 24, 610–618 (2014)

    Article  Google Scholar 

  13. T.Ş Kuru, M. Kuru, S. Bağcı, J. Alloy. Comp. 753, 483–490 (2018)

    Article  Google Scholar 

  14. A. Govindaraj, E. Flahaut, C. Flahaut, A. Peigney, A. Rousset, C.N.R. Rao, J. Mater. Res. 14, 2567–2576 (1999)

    Article  ADS  Google Scholar 

  15. Z. Lei, W. You, M. Liu, Chem. Commun. 17, 2142–2143 (2003)

    Article  Google Scholar 

  16. N. Romeo, A. Dallaturca, R. Braglia, G. Sberveglieri, Appl. Phys. Lett. 22, 21–22 (1973)

    Article  ADS  Google Scholar 

  17. A. Govindaraj, E. Flahaut, C. Laurent, A. Peigney, A. Rousset, C.N.R. Rao, J. Mater. Res. 14, 2567–2576 (1999)

    Article  ADS  Google Scholar 

  18. G. Gusmano, G. Montesperelli, E. Traversa, G. Mattogno, Am. Ceram. Soc. 76, 743–750 (1993)

    Article  Google Scholar 

  19. N.J. Van der Laag, Environmental effects on the fracture of oxide ceramics. Doctorat Thesis, Technical University, Eindhoven, (2002)

  20. V.N. Nikolić, Magnetochem. Mater. Appl. 66, 34 (2020)

    Google Scholar 

  21. R.J. Hill, J.R. Graig, G.V. Gibbs, Phys. Chem. Miner. 4, 317–339 (1979)

    Article  ADS  Google Scholar 

  22. S. Jiang, T. Lu, Y. Long, J. Chen, J. Appl. Phys. 111, 043516 (2012)

    Article  ADS  Google Scholar 

  23. S. Radautsan, I.J. Tiginyanu, Appl. Phys. Suppl. 32, 5 (1993)

    Article  ADS  Google Scholar 

  24. M. Yousaf, S.A. Dalhatu, G. Murtaza, R. Khenata, M. Sajjad, A. Musa, H.A. Rahnamaye Aliabad, M.A. Saeed, J. Alloy Compd. 625, 182–187 (2015)

    Article  Google Scholar 

  25. M. Guittard, C. Souleau, H. Farsam, Acad. Sci. 259, 2847–2849 (1964)

    Google Scholar 

  26. P. Canepa, S.H. Bo, G.S. Gautam, B. Key, W.D. Richards, T. Shi, Y. Tian, Y. Wang, J. Li, G. Ceder, Nat. Commun. 8, 1–8 (2017)

    Article  Google Scholar 

  27. M. Saeed, Z. Noor, R. Ali, A. Laref, H.M. Althib, T.H. Flemban, G. Murtaza, Int. J. Energy Res. 45, 8307–8315 (2021)

    Article  Google Scholar 

  28. W. Tahir, G.M. Mustafa, N.A. Noor, S.M. Alay-e-Abbas, Q. Mahmood, A. Laref, Ceram. Int. 46(17), 26637–26645 (2020)

    Article  Google Scholar 

  29. M. Zanib, N.A. Noor, M.A. Iqbal, I. Mahmood, A. Mahmood, S.M. Ramay, T. Uzzaman, Curr. Appl. Phys. 20(10), 1097–1102 (2020)

    Article  ADS  Google Scholar 

  30. A.R. Chaudhry, B.U. Haq, S. AlFaify, A. Shaari, A. Laref, Mater. Sci. Semicond. Process. 121, 105435 (2021)

    Article  Google Scholar 

  31. M. Saeed, Z. Noor, A. Laref, H. Althib, H.T. Flemban, G. Murtaza, Mater. Sci. Semicond. Process. 127, 105736 (2021)

    Article  Google Scholar 

  32. P. Blaha, K. Schwarz, G.K. Madsen, D. Kvasnicka, J. Luitz, WIEN2k: An augmented plane wave+ local orbitals program for calculating crystal properties. 60 (2001)

  33. W. Kohn, L.J. Sham, Phys. Rev. 140, 1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  34. J. Perdew, A. Ruzsinsky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  35. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  36. Z. Wu, R.E. Cohen, Phys. Rev. B 73, 235116 (2006)

    Article  ADS  Google Scholar 

  37. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  38. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 67, 175 (2006)

    Google Scholar 

  39. J.P. Poirier, A. Tarantola, Phys. Earth Planet. Inter. 109, 1–8 (1998)

    Article  ADS  Google Scholar 

  40. K.M. Wong, W. Khan, M. Shoaib, U. Shah, S.H. Khan, G. Murtaza, J. Elect. Mater. 47(1), 56–76 (2018)

    Article  ADS  Google Scholar 

  41. M. Born, Math. Proc. Camb. Phil. Soc 36, 160 (1940)

    Article  ADS  Google Scholar 

  42. S. Ali, H. Ullah, A.A. AlObaid, T.I.A. Muhimeed, Eur. Phys. J. Plus 136, 770 (2021)

    Article  Google Scholar 

  43. M.D. Segall, R. Shah, C.J. Pickard, M.C. Payne, Phys. Rev 54, 16317 (1996)

    Article  Google Scholar 

  44. I.N. Frantsevich, F.F. Voronov, S.A. Bokuta, Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, Ed. by I.N. Frantsevich (Naukova Dumka, Kiev, 1983), pp. 60–180

    Google Scholar 

  45. S.F. Pugh, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367), 823–843 (1954)

  46. M.U. Salma, M.A. Rahman, Comput. Condens. Matter 15, 42–47 (2018)

    Article  Google Scholar 

  47. R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Clarendon Press, Oxford, U.K., 1990), p. 438

    Google Scholar 

  48. B. Silvi, A. Savin, Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371, 683–686 (1994)

    Article  ADS  Google Scholar 

  49. A.D. Becke, K.E. Edgecombe, A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397 (1990)

    Article  ADS  Google Scholar 

  50. S. Belarouci, T. Ouahrani, N. Benabdallah, Á. Morales-García, R. Franco, Quantum-mechanical simulations of pressure effects on MgIn2S4 polymorphs. Phase Transit. 91(7), 759–771 (2018)

    Article  Google Scholar 

  51. K. Boukri, T. Ouahrani, M. Badawi, K. Demmouche, R. Franco, J.M. Recio, “Disclosing the behavior under hydrostatic pressure of rhombohedral MgIn2Se4 by means of first-principles calculations. Phys. Chem. 22, 21909–21918 (2020)

    Google Scholar 

  52. G. Chen, A. Shakouri, J. Heat Transf. 124(2), 242–252 (2002)

    Article  Google Scholar 

  53. E.E. Antonova, D.C. Looman, Finite elements for thermoelectric device analysis in ANSYS. In ICT 2005. 24th International Conference on Thermoelectrics (IEEE, Clemson SC, 2005) pp. 215–218.

  54. F. Guo, F. Cui, Y. Liu, X.J. Meng, Nano Micro Small 14(37), 1802615 (2018)

    Google Scholar 

  55. H. Alam, S. Ramakrishna, Nano Energy 2(2), 190–212 (2013)

    Article  Google Scholar 

  56. N. Mingo, Appl. Phys. Lett. 84(14), 2652–2654 (2004)

    Article  ADS  Google Scholar 

  57. R. Ullah, M.A. Ali, G. Murtaza, A. Khan, A. Mahmood, Int. J. Energy Res. 44(11), 9035–9049 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under Grant Number (R.G. P. 2/74/43). The author (A. Laref) acknowledges support from the “Research Center of the Female Scientific and Medical Colleges”, Deanship of Scientific Research, King Saud University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hayat Ullah or G. Murtaza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, L., Ouahrani, T., Ullah, H. et al. First-principles study on the electronic band profiles, structural, mechanical and thermoelectric properties of semiconducting MgSc2Te4 and MgY2Te4 Spinels. Eur. Phys. J. Plus 137, 377 (2022). https://doi.org/10.1140/epjp/s13360-022-02547-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02547-4

Navigation