Skip to main content

Advertisement

Log in

Computational Analysis of Structural, Electronic, Magnetic and Optical Properties of MgTM2O4 (TM = Fe, V) Spinels

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electronic behavior, ferromagnetism and optical characteristics of MgTM2O4 (TM = V, Fe) cubic spinels are investigated using the full-potential linearized augmented plane wave (FP-LAPW) approach, which involves concepts of density functional theory. The calculated band structures reveal half-metallic behavior in MgV2O4 and a ferromagnetic semiconducting nature in MgFe2O4. Moreover, the density of states (DOS) reveals that the magnetism results from the strong hybridization between Fe/V-3d and O-2p states, due to which Fe/V magnetic moments are reduced because magnetic moments appear at Mg and O sites. Hence, the spinels have importance for spintronic applications. The ferromagnetic phase stability is confirmed by the values of released energy, which are consistent with the computed values of the crystal field and exchange energies. The dielectric constant and refractive index values are large for MgV2O4 but small for MgFe2O4 due to their half-metallic and semiconducting nature, respectively. The blueshift of the absorption spectrum makes the spinels attractive for optical applications. The electrical and thermal conductivity are also computed using BoltzTraP code, and potential energy conversion applications are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A.K. Singh, A. Dhillon, T.D. Senguttuvan, and A.M. Siddiqui, Int. J. Current Eng. Technol. 4, 6 (2014).

    Google Scholar 

  2. S. Klemme, H.C. O’Neill, W. Schnelle, and E. Gmelin, Am. Mineral. 85, 1686 (2000).

    Article  CAS  Google Scholar 

  3. B. Viswanathan and V.R.K. Murthy, Narosa Publishers (1990).

  4. R. Sepahvand and R. Mohamadzade, J. Mater. Sci. Appl. 2, 1564 (2011).

    Google Scholar 

  5. K.E. Sickafus, J.M. Wills, and N.W. Grimes, J. Am. Ceram. Soc. 82, 3279 (1999).

    Article  CAS  Google Scholar 

  6. G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agarwal, and R.J. Chaudhary, Adv. Mater. Lett. 3, 21 (2012).

    Article  CAS  Google Scholar 

  7. D. Bahadur, Bull. Mater. Sci. 15, 431 (1992).

    Article  CAS  Google Scholar 

  8. S.V. Bangale, D.R. Patil, and S.R. Bamane, Arch. Appl. Sci. Res. 3, 506 (2011).

    CAS  Google Scholar 

  9. V.G. Harris, A. Geiler, and Y. Chen, J. Magn. Magn. Mater. 321, 2035 (2009).

    Article  CAS  Google Scholar 

  10. Y. Qu, H. Yang, and N. Yang, Mater. Lett. 60, 3548–3552 (2006).

    Article  CAS  Google Scholar 

  11. N. Kasapoglu, B. Birsoz, and A. Baykal, Cent. Eur. J. Chem. 5, 570 (2007).

    CAS  Google Scholar 

  12. S.W. Cao, Y.J. Zhu, G.F. Cheng, and Y.H. Huang, J. Hazard. 171, 431 (2009).

    Article  CAS  Google Scholar 

  13. Y.L. Liu, Z.M. Liu, and Y. Yang, Sens. Actuator B Chem. 107, 600 (2005).

    Article  CAS  Google Scholar 

  14. M. Koledintseva, J. Drewniak, Y. Zhang, J. Lenn, and M. Thoms, J. Magn. Magn. Mater. 321, 730 (2009).

    Article  CAS  Google Scholar 

  15. A.I. Turkin and V.A. Drebushchak, J. Cryst. Growth 265, 165 (2004).

    Article  CAS  Google Scholar 

  16. T. Sasaki et al., J. Supercrit. Fluids 53, 92 (2010).

    Article  CAS  Google Scholar 

  17. H. Aono, H. Hirazawa, T. Naohara, and T. Maehara, Appl. Surf. Sci. 254, 2319 (2008).

    Article  CAS  Google Scholar 

  18. A. Pradeep, P. Priyadharsini, and G. Chandrasekaran, J. Magn. Magn. Mater. 320, 2774 (2008).

    Article  CAS  Google Scholar 

  19. V. Šepelák, D. Baabe, D. Mienert, F.J. Litterst, and K.D. Becker, Scr. Mater. 48, 961 (2003).

    Article  Google Scholar 

  20. Y. Huang, Y. Tang, J. Wang, and Q. Chen, Mater. Chem. Phys. 97, 394 (2006).

    Article  CAS  Google Scholar 

  21. Y. Zhang and G.C. Stangle, J. Mater. Res. 9, 1997 (1994).

    Article  CAS  Google Scholar 

  22. N. Kaur, S. Sharma, S. Kaur, and H. Nayyar, Arch. Agron. Soil Sci. 60, 1593 (2014).

    Article  CAS  Google Scholar 

  23. K.S. Rane, V.M.S. Verenkar, and P.Y. Sawant, Bull. Mater. Sci. 24, 323 (2001).

    Article  CAS  Google Scholar 

  24. R.A. Candeia, M.A.F. Souza, M.I.B. Bernardi, S.C. Maestrelli, I.M.G. Santos, A.G. Souza, and E. Longo, Mater. Res. Bull. 41, 183 (2006).

    Article  CAS  Google Scholar 

  25. C. Doroftei, E. Rezlescu, N. Rezlescu, and P.D. Popa, J. Optoelectron. Adv. Mater. 8, 1012 (2006).

    CAS  Google Scholar 

  26. M. Gateshki, V. Petkov, S.K. Pradhanb, and T. Vogt, J. Appl. Crystallogr. 38, 772 (2005).

    Article  CAS  Google Scholar 

  27. M. Khalid, S. Riaz, S. Naseem and M. Azam, Theoretical study of spinel structure of FeAl2O4 using density functional theory, in Proceedings of The 2014 World Congress on Advances in Civil, Environmental and Materials Research (ACEM’14), August 24-28, BEXCO, Busan, Korea. http://www.i-asem.org/acem14_publication.html

  28. S. Da Dalt and C.P. Bergmann, Viña del Mar, Chile (2010).

  29. Y.Q. Liu and L. Gao, Carbon 43, 47 (2005).

    Article  CAS  Google Scholar 

  30. H. Mamiya, M. Onoda, T. Furubayashi, J. Tang, and I. Nakatani, J. Appl. Phys. 81, 5289 (1997).

    Article  CAS  Google Scholar 

  31. E.M. Wheeler, B. Lake, A.T.M.N. Islam, M. Reehuis, P. Steffens, T. Guidi, and A.H. Hill, Phys. Rev. B 82, 140406 (2010).

    Article  CAS  Google Scholar 

  32. F. Naaz, H.K. Dubey, C. Kumari, P. Lahiri, and S.N. Appl, Sci. 2, 808 (2020).

    CAS  Google Scholar 

  33. H. Tian, J. Peng, T. Lv, C. Sun, and H. He, J. Solid State Chem. 257, 40 (2018).

    Article  CAS  Google Scholar 

  34. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, Technische Universitat Wien, Austria (2001).

  35. S.M. Alay-e-Abbas, S. Nazir, K.M. Wong, A. Shaukat, and U. Schwingenschlogl, EPL 106, 27003 (2014).

    Article  CAS  Google Scholar 

  36. K.M. Wong, S.M. Alay-e-Abbas, Y. Fang, A. Shaukat, and Y. Lie, J. Appl. Phys. 114, 034901 (2013).

    Article  CAS  Google Scholar 

  37. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    Article  CAS  Google Scholar 

  38. N.A. Noor, S.M. Alay-e-Abbas, M.U. Sohaib, S.M.G. Abbas, and A. Shaukat, J. Magn. Magn. Mater. 374, 164 (2015).

    Article  CAS  Google Scholar 

  39. D.J. Singh, Phys. Rev. B 82, 205102 (2010).

    Article  CAS  Google Scholar 

  40. M. Sajjad, H.X. Zhang, N.A. Noor, S.M. Alay-e-Abbas, A. Shauka, and Q. Mahmood, J. Magn. Magn. Mater. 343, 177 (2013).

    Article  CAS  Google Scholar 

  41. P. Hohenberg and W. Kohn, Phys. Rev. 136, 86 (1964).

    Article  Google Scholar 

  42. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  43. G. K. Madsen, D. J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67 (2006).

  44. Q. Mahmood, M. Hassan, M.A. Faridi, B. Sabir, G. Murtaza, and A. Mahmood, Curr. Appl. Phys. 16, 549 (2016).

    Article  Google Scholar 

  45. Q. Mahmood, S.M. Alay-e-Abbas, M. Yaseen, A. Mahmood, M. Rashid, and N.A. Noor, Super. Cond. Magen. 29, 1 (2016).

    Google Scholar 

  46. C. Wen and S. Yan, J. Appl. Phys. 107, 043913 (2010).

    Article  CAS  Google Scholar 

  47. H.S. Saini, M. Singh, A.H. Reshak, and M.K. Kashyap, J. Magn. Magn. Mater. 331, 1 (2013).

    Article  CAS  Google Scholar 

  48. M. Sajjad, H.X. Zhang, N.A. Noor, S.M. Alay-e-Abbas, A. Shaukat, and Q. Mahmood, J. Magn. Magn. Mater. 343, 177 (2013).

    Article  CAS  Google Scholar 

  49. A. Walsh, S.H. Wai, Y. Yan, M.M. Al-Jassim, and J.A. Turner, Phys. Rev. B 76, 16511 (2007).

    Google Scholar 

  50. Q. Mahmood and M. Hassan, J. Alloys Compd. 704, 659 (2017).

    Article  CAS  Google Scholar 

  51. T. Dietl, Semicond. Sci. Technol. 17, 377 (2002).

    Article  CAS  Google Scholar 

  52. Q. Mahmood, S.M. Alay-e-Abbas, M. Hassan, and N.A. Noor, J. Alloys Compd. 688, 899 (2016).

    Article  CAS  Google Scholar 

  53. S. Sanvito, P. Ordejon, and N.A. Hill, Phys. Rev. B. 63, 165206 (2001).

    Article  CAS  Google Scholar 

  54. R.D. McNorton, T.M. Schuler, and J.M. MacLaren, Phys. Rev. B 78, 075209 (2008).

    Article  CAS  Google Scholar 

  55. R.A. Stern, T.M. Schuler, J.M. MacLaren, D.L. Ederer, V. Perez-Dieste, and F.J. Himpsel, J. Appl. Phys. 95, 7468 (2004).

    Article  CAS  Google Scholar 

  56. G. Marius, Springer, Berlin (2010), pp. 775–776

  57. D. Koller, F. Tran, and P. Blaha, Phys. Rev. B. 83, 195134 (2011).

    Article  CAS  Google Scholar 

  58. D. Penn, Phys. Rev. 128, 2093 (1962).

    Article  CAS  Google Scholar 

  59. W. Benstaalia, S. Bentata, A. Abbad, and A. Belaidi, Mater. Sci. Semi. Proc. 16, 231237 (2013).

    Google Scholar 

  60. M.A. Khan, A. Kashyap, A.K. Solanki, T. Nautiyal, and S. Auluck, Phys. Rev. B 48, 16974 (1993).

    Article  CAS  Google Scholar 

  61. R. Khenata et al., Solid State Commun. 136, 120 (2005).

    Article  CAS  Google Scholar 

  62. W. Benstaalia, S. Bentata, A. Abbad, and A. Belaidi, Mater. Sci. Semicond. Proc. 16, 231 (2013).

    Article  CAS  Google Scholar 

  63. T.I. Al-Muhimeed, G.M. Mustafa, A.A. AlObaid, A. Mera, K. Shahzadi, M. Mana AL-Anazy, and Q. Mahmood, Eur. Phys. J. Plus 137, 299 (2022).

    Article  CAS  Google Scholar 

Download references

Funding

The author M. Hassan (Mahmood-ul-Hassan) is also thankful to University of the Punjab for the financial assistance of this work through the Faculty Research Grant Program for the years 2022–2023. The author Bakhtiar Ul Haq extends his appreciation to the Deanship of Scientific Research at King Khalid University for funding his work through the Research Groups Program under Grant No. R.G.P. 2/186/43.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hassan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M., Muazzam, M., Zelai, T. et al. Computational Analysis of Structural, Electronic, Magnetic and Optical Properties of MgTM2O4 (TM = Fe, V) Spinels. J. Electron. Mater. 51, 4446–4455 (2022). https://doi.org/10.1007/s11664-022-09690-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09690-9

Keywords

Navigation