Skip to main content
Log in

Structural and Thermoelectronic Properties of Chalcopyrite MgSiX2 (X = P, As, Sb)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have explored the structural, electronic, optical, and mechanical properties of the magnesium-based chalcopyrites MgSiP2, MgSiAs2, and MgSiSb2 using density functional theory with five different generalized gradient approximation (GGA) functionals: Perdew–Wang (1991), Perdew–Burke–Ernzerhof, revised Perdew–Burke–Ernzerhof, modified Perdew–Burke–Ernzerhof for solids, and Armiento–Mattson (2005) as well as the local density approximation. Change of the constituent element from P to Sb significantly affected the lattice constants, elastic constants, and thermal and dielectric properties. Our theoretically computed results are in reasonable agreement with experiments and other theoretical calculations. The electronic band structure results imply that all three considered compounds are semiconductors. MgSiP2 has the highest value of elastic constants, and bulk and shear moduli compared with the other two binary chalcopyrites. Furthermore, the optical response in terms of the dielectric functions, optical reflectivity, refractive index, extinction coefficient, and electron energy loss of the compounds were also investigated in the energy range from 0 eV to 15 eV. The calculated optical results reveal optical polarization anisotropy for all three compounds, making them useful for optoelectronic device applications. Moreover, specific focus is also given to quantify the dependence of various thermal properties on finite pressure/temperature within the quasiharmonic approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Shay and J.H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications (Oxford: Pergamon, 1975), pp. 1–254.

    Book  Google Scholar 

  2. S.R. Römer, P. Kroll, and W. Schnick, J. Phys. Condens. Matter 21, 275407 (2009).

    Article  Google Scholar 

  3. J.E. Jaffe and A. Zunger, Phys. Rev. B 27, 5176 (1983).

    Article  Google Scholar 

  4. J.L. Martins and A. Zunger, Phys. Rev. B 32, 2689 (1985).

    Article  Google Scholar 

  5. J.E. Jaffe and A. Zunger, Phys. Rev. B 29, 1882 (1984).

    Article  Google Scholar 

  6. J.E. Jaffe and A. Zunger, Phys. Rev. B 30, 741 (1984).

    Article  Google Scholar 

  7. S.Y. Sarkisov and S. Picozzi, J. Phys. Condens. Matter 19, 016210 (2007).

    Article  Google Scholar 

  8. P. Zapol, R. Pandey, M. Seel, J.M. Recio, and M.C. Ohmer, J. Phys. Condens. Matter 11, 4517 (1999).

    Article  Google Scholar 

  9. A.G. Petukhov, W.R.L. Lambrecht, and B. Segall, Phys. Rev. B 49, 4549–4558 (1994).

    Article  Google Scholar 

  10. V. Kumar, S.K. Tripathy, V. Jha, and B.P. Singh, Phys. Lett. A 378, 519 (2014).

    Article  Google Scholar 

  11. T. Ouahrani, Eur. Phys. J. B 86, 369 (2013).

    Article  Google Scholar 

  12. T. Ouahrani, Y.Ö. Çiftci, and M. Mebrouki, J. Alloys Compd. 610, 372 (2014).

    Article  Google Scholar 

  13. S.J. Park, Y. Cho, S.H. Moon, J.E. Kim, D.-K. Lee, J. Gwak, J. Kim, D.-K. Kim, and B.K. Min, J. Phys. D Appl. Phys. 47, 135105 (2014).

    Article  Google Scholar 

  14. V.L. Shaposhnikov, A.V. Krivosheeva, F.A. D’Avitaya, J.-L. Lazzari, and V.E. Borisenko, Phys. Stat. Sol. (b) 245, 142 (2008).

    Article  Google Scholar 

  15. F. Chiker, Z. Kebbab, R. Miloua, and N. Benramdane, Solid State Commun. 151, 1568 (2011).

    Article  Google Scholar 

  16. C. Suh and K. Rajan, Appl. Surf. Sci. 223, 148 (2004).

    Article  Google Scholar 

  17. S.C. Erwin and I. Žutić, Nat. Mater. 3, 410 (2004).

    Article  Google Scholar 

  18. V.L. Shaposhnikov, A.V. Krivosheeva, V.E. Borisenko, J.-L. Lazzari, and F.A. d’Avitaya, Phys. Rev. B 85, 205201 (2012).

    Article  Google Scholar 

  19. S. Ullah, G. Murtaza, R. Khenata, and A.H. Reshak, Mater. Sci. Semicond. Process. 26, 79 (2014).

    Article  Google Scholar 

  20. L. Shi, J. Hu, Y. Qin, Y. Duan, L. Wu, X. Yang, and G. Tang, J. Alloys Compd. 611, 210 (2014).

    Article  Google Scholar 

  21. M.V. Schilfgaarde, N. Newman, T.J. Peshek, T.J. Coutts, and T.A. Gessert, in Photovoltaic Specialists Conference (PVSC), 34th IEEE (2009), pp. 001297.

  22. D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  Google Scholar 

  23. J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  Google Scholar 

  24. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  25. B. Hammer, L.B. Hansen, and J.K. Norskøv, Phys. Rev. B 59, 7413 (1999).

    Article  Google Scholar 

  26. R. Armiento and A.E. Mattsson, Phys. Rev. B 72, 085108 (2005).

    Article  Google Scholar 

  27. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

    Article  Google Scholar 

  28. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  29. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  Google Scholar 

  30. A.A. Vaipolin, Fiz. Tverd. Tela 15, 1430 (1973). [Sov. Phys. Solid State 15, 965 (1973)].

  31. M. Rasander and M.A. Moram, J. Chem. Phys. 143, 144104 (2015).

    Article  Google Scholar 

  32. Y.L. Page and P. Saxe, Phys. Rev. B 65, 104104 (2002).

    Article  Google Scholar 

  33. M.J. Mehl, J.E. Osburn, D.A. Papaconstantopoulos, and B.M. Klein, Phys. Rev. B Condens. Matter 41, 10311 (1990).

    Article  Google Scholar 

  34. Z. Yang, X. Wang, L. Liu, S. Yang, and X. Su, Solid State Sci. 13, 1604 (2011).

    Article  Google Scholar 

  35. S. Sharma, A.S. Verma, and V.K. Jindal, Mater. Res. Bull. 53, 218 (2014).

    Article  Google Scholar 

  36. Z.-J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, and J. Meng, Phys. Rev. B 76, 054115 (2007).

    Article  Google Scholar 

  37. V.V. Bannikov, I.R. Shein, and A.L. Ivanovskii, J. Alloys Compd. 533, 71 (2012).

    Article  Google Scholar 

  38. J.B. Levine, S.H. Tolbert, and R.B. Kaner, Adv. Funct. Mater. 19, 3519 (2009).

    Article  Google Scholar 

  39. W. Voigt, Lehrbuch der Kristallphysik, 2nd ed. (Leipzig and Berlin: B.G. Teubner, 1910) [reprinted in 1928].

  40. A. Reuss and Z. Angew, Math. Mech. 9, 49 (1929).

    Google Scholar 

  41. R. Hill, Proc. R. Soc. Lond. Ser. A 65, 349 (1952).

    Article  Google Scholar 

  42. S.F. Pugh, Philos. Mag. 45, 823 (1954).

    Article  Google Scholar 

  43. D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992).

    Article  Google Scholar 

  44. I. Papadimitriou, C. Utton, A. Scott, and P. Tsakiropoulos, Metall. Mater. Trans. A 46, 566 (2015).

    Article  Google Scholar 

  45. H. Fu, D. Li, F. Peng, T. Gao, and X. Cheng, J. Alloys Compd. 473, 255 (2009).

    Article  Google Scholar 

  46. I. N. Frantsevich, F. F. Voronov, S. A. Bokuta, in Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, ed. by I.N. Frantsevich (Naukova Dumka, Kiev, 1983), pp. 60–180.

  47. P. Ravindran, L. Fast, P.A. Korzhavyi, and B. Johansson, J. Appl. Phys. 84, 4891 (1998).

    Article  Google Scholar 

  48. D.H. Chung and W.R. Buessem, Anisotropy in Single Crystal Refractory Compound, vol 2, ed. by F.W. Vahldiek and S.A. Mersol (New York: Plenum, 1968), p. 217.

  49. S.I. Ranganathan and M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008).

    Article  Google Scholar 

  50. M.A. Blanco, E. Francisco, and V. Luana, Comput. Phys. Commun. 158, 57 (2004).

    Article  Google Scholar 

  51. E. Francisco, M.A. Blanco, and G. Sanjurjo, Phys. Rev. B 63, 094107 (2001).

    Article  Google Scholar 

  52. S. Sharma, A.S. Verma, R. Bhandari, and V.K. Jindal, Comput. Mater. Sci. 26, 108 (2014).

    Article  Google Scholar 

  53. B. Ai, X. Luo, J. Yu, W. Miao, and P. Hub, Comput. Mater. Sci. 82, 37 (2014).

    Article  Google Scholar 

  54. X. Zha, S. Li, R. Zhang, and Z. Lin, Commun. Comput. Phys. 16, 201 (2014).

    Article  Google Scholar 

  55. C.H.L. Goodman, Semicond. Sci. Technol. 6, 725 (1991).

    Article  Google Scholar 

  56. Z. Zhaochun, P. Ruiwu, and C. Nianyi, Mater. Sci. Eng. B 54, 149 (1998).

    Article  Google Scholar 

  57. K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).

    Article  Google Scholar 

  58. I. Ahmad and M. Maqbool, Comput. Phys. Commun. 185, 2829 (2014).

    Article  Google Scholar 

  59. C.M.I. Okoye, J. Phys. Condens. Matter 15, 5945 (2003).

    Article  Google Scholar 

  60. F. Wooten, Optical Properties of Solids (New York: Academic, 1972).

    Google Scholar 

  61. N. Korozlu, K. Colakoglu, E. Deligoz, and Y.O. Ciftci, Opt. Commun. 284, 1863 (2011).

    Article  Google Scholar 

  62. B. Amin, I. Ahmad, M. Maqbool, S. Goumri-Said, and R. Ahmad, J. Appl. Phys. 109, 023109 (2011).

    Article  Google Scholar 

  63. P. Ravindran, A. Delin, B. Johansson, O. Eriksson, and J.M. Wills, Phys. Rev. B 59, 1776 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. O. Ciftci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocak, B., Ciftci, Y.O. & Surucu, G. Structural and Thermoelectronic Properties of Chalcopyrite MgSiX2 (X = P, As, Sb). J. Electron. Mater. 46, 247–264 (2017). https://doi.org/10.1007/s11664-016-4836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4836-3

Keywords

Navigation