Skip to main content
Log in

Torsional vibrations of functionally graded restrained nanotubes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The torsional free vibration response of a functionally graded (FG) restrained nanotube is studied through an exact analytical solution method. Fourier sine series is utilized with the Stokes’ transformation for the FG nanotube with arbitrary boundary conditions. To provide generality to the solution of the problem, regardless of whether it is rigid or non-rigid two rotational (torsional direction) springs in torsional direction are attached to a FG nanorod at two ends. The nonlocal elasticity theory is employed to derive the higher order differential equations with non-local boundary conditions of the functionally graded nanotube. The present model can account for the torsional rotation mechanism at the ends and the nonlocal effects of the atomic range force by introducing torsional spring coefficients and nonlocal parameter. A coefficient matrix including these parameters is obtained for torsional vibration. The characteristic equation of this matrix, which gives the free torsional frequencies, is computed and solved for the dynamical response of the functionally graded nanotubes. In addition, eigen value solutions expressed exact analytically are tabulated to figure out the effects of FG index, length scale parameter, torsional restraints on the free vibration characteristics of the FG nanorod. Analytical results include validation and comparison with previously published papers in the literature are presented for the free vibration response that fully demonstrates the accuracy of the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W.J. Poole, M.F. Ashby, N.A. Fleck, Micro-hardness of annealed and work-hardened copper polycrystals. Scr. Mater. 34, 559–564 (1996)

    Article  Google Scholar 

  2. A.W. McFarland, J.S. Colton, Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)

    Article  ADS  Google Scholar 

  3. D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  ADS  MATH  Google Scholar 

  4. R.D. Mindlin, H.F. Tiersten, Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  5. W.T. Koiter, Couple stresses in the theory of elasticity I and II. Proc. K Ned. Akad. Wet. (B) 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  6. R.A. Toupin, Theory of elasticity with couple stresses. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MATH  Google Scholar 

  7. A.C. Eringen, Theory of micropolar plates. Z. Angew. Math. Phys. 18, 12–30 (1967)

    Article  Google Scholar 

  8. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface-waves. J. Appl. Phys. 1983(54), 4703–4710 (1983)

    Article  ADS  Google Scholar 

  9. A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. N.A. Fleck, J.W. Hutchinson, A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825–1857 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. N.A. Fleck, J.W. Hutchinson, A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)

    Article  ADS  MATH  Google Scholar 

  12. L.J. Sudak, Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Phys. 94, 7281–7287 (2003)

    Article  ADS  Google Scholar 

  13. M. Jalaei, O. Civalek, On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam. Int. J. Eng. Sci. 143, 14–32 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Peddieson, G.R. Buchanan, R.P. McNitt, Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)

    Article  Google Scholar 

  15. M.C. Ece, M. Aydogdu, Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes. Acta Mech. 190, 185–195 (2007)

    Article  MATH  Google Scholar 

  16. M. Simsek, Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Phys. E Low-Dimens. Syst. Nanostruct. 43, 182–191 (2010)

    Article  ADS  Google Scholar 

  17. S.D. Akbas, H. Ersoy, B. Akgoz, O. Civalek, Dynamic analysis of a fiber-reinforced composite beam under a moving load by the Ritz method. Mathematics 9, 1048 (2021)

    Article  Google Scholar 

  18. C. Demir, O. Civalek, On the analysis of microbeams. Int. J. Eng. Sci. 121, 14–33 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  20. B. Arash, Q. Wang, A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51, 303–313 (2012)

    Article  Google Scholar 

  21. T. Murmu, S.C. Pradhan, Thermal effects on the stability of embedded carbon nanotubes. Comput. Mater. Sci. 47, 721–726 (2010)

    Article  Google Scholar 

  22. F. Yang, A.C.M. Chong, D.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  23. S.K. Park, X.L. Gao, Bernoulli-Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  ADS  Google Scholar 

  24. H.M. Ma, X.L. Gao, J.N. Reddy, A microstructure dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 2008(56), 3379–3391 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. M. Simsek, Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory. Int. J. Eng. Sci. 48, 1721–1732 (2010)

    Article  MATH  Google Scholar 

  26. M. Yayli, M. Free vibration behavior of a gradient elastic beam with varying cross section, Shock Vibr. 2014.

  27. M. Yayli, A compact analytical method for vibration of micro-sized beams with different boundary conditions. Mech. Adv. Mater. Struct. 2016, 1–36 (2017)

    MathSciNet  Google Scholar 

  28. M. Toufik, A. Atangana, Nonlocal continuum theories of beam for the analysis of carbon nanotubes. Eur. Phys. J. Plus 132(10), 1–16 (2017)

    Google Scholar 

  29. O. Rahmani, M. Shokrnia, H. Golmohammadi, S.A.H. Hosseini, Dynamic response of a single-walled carbon nanotube under a moving harmonic load by considering modified nonlocal elasticity theory. Eur. Phys. J. Plus 133(2), 1–13 (2018)

    Article  Google Scholar 

  30. H.B. Khaniki, S. Hosseini-Hashemi, Dynamic transverse vibration characteristics of nonuniform nonlocal strain gradient beams using the generalized differential quadrature method. Eur. Phys. J. Plus 132(11), 1–15 (2017)

    Google Scholar 

  31. S. Sahmani, M.M. Aghdam, Axial postbuckling analysis of multilayer functionally graded composite nanoplates reinforced with GPLs based on nonlocal strain gradient theory. Eur. Phys. J. Plus 132(11), 1–15 (2017)

    Article  Google Scholar 

  32. S. Trabelsi, S. Zghal, F. Dammak, Thermo-elastic buckling and post-buckling analysis of functionally graded thin plate and shell structures. J. Braz. Soc. Mech. Sci. Eng. 42(5), 1–22 (2020)

    Article  Google Scholar 

  33. S. Zghal, F. Dammak, Vibrational behavior of beams made of functionally graded materials by using a mixed formulation. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 234(18), 3650–3666 (2020)

    Article  Google Scholar 

  34. S. Zghal, D. Ataoui, F. Dammak, Static bending analysis of beams made of functionally graded porous materials. Mech. Based Design Struct. Mach. pp 1–18

  35. S. Zghal, S. Trabelsi, F. Dammak, Post-buckling behavior of functionally graded and carbon-nanotubes based structures with different mechanical loadings. Mech. Based Design Struct. Mach. pp 1–43

  36. S. Zghal, S. Trabelsi, A. Frikha, F. Dammak, Thermal free vibration analysis of functionally graded plates and panels with an improved finite shell element. J. Therm. Stresses 44(3), 315–341 (2021)

    Google Scholar 

  37. S. Zghal, F. Dammak, Vibration characteristics of plates and shells with functionally graded pores imperfections using an enhanced finite shell element. Comput. Math. Appl. 99, 52–72 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Zghal, F. Dammak, Buckling responses of porous structural components with gradient power-based and sigmoid material variations under different types of compression loads. Compos. Struct. 273, 114313 (2021)

    Article  Google Scholar 

  39. S. Zghal, D. Ataoui, F. Dammak, Free vibration analysis of porous beams with gradually varying mechanical properties. In: Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2021, p 14750902211047746.

  40. S. Zghal, A. Frikha, F. Dammak, Non-linear bending analysis of nanocomposites reinforced by graphene-nanotubes with finite shell element and membrane enhancement. Eng. Struct. 158, 95–109 (2018)

    Article  Google Scholar 

  41. S. Zghal, A. Frikha, F. Dammak, Static analysis of functionally graded carbon nanotube-reinforced plate and shell structures. Compos. Struct. 176, 1107–1123 (2017)

    Article  MATH  Google Scholar 

  42. S. Zghal, A. Frikha, F. Dammak, Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures. Appl. Math. Model. 53, 132–155 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. S. Zghal, A. Frikha, F. Dammak, Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels. Compos. B Eng. 150, 165–183 (2018)

    Article  MATH  Google Scholar 

  44. A. Frikha, S. Zghal, F. Dammak, Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element. Aerosp. Sci. Technol. 78, 438–451 (2018)

    Article  MATH  Google Scholar 

  45. H. Mellouli, H. Jrad, M. Wali, F. Dammak, Meshfree implementation of the double director shell model for FGM shell structures analysis. Eng. Anal. Bound. Elem. 99, 111–121 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. J.N. Reddy, S.D. Pang, Nonlocal continuum theories of beam for the analysis of carbon nanotubes. J. Appl. Phys. 103, 1–16 (2008)

    Article  Google Scholar 

  47. S. Filiz, M. Aydogdu, Axial vibration of carbon nanotube heterojunctions using nonlocal elasticity. Comput. Mater. Sci. 49, 619–627 (2010)

    Article  Google Scholar 

  48. M. Aydogdu, Axial vibration of the nanorods with the nonlocal continuum rod model. Phys. E Low-Dimens. Syst. Nanostruct. 41, 861–864 (2009)

    Article  ADS  Google Scholar 

  49. C. Li, L.Q. Yao, W.Q. Chen, S. Li, Comments on nonlocal effects in nano-cantilever beams. Int. J. Eng. Sci. 87, 47–57 (2015)

    Article  Google Scholar 

  50. C. Li, A nonlocal analytical approach for torsion of cylindrical nanostructures and the existence of higher-order stress and geometric boundaries. Compos. Struct. 118, 607–621 (2014)

    Article  Google Scholar 

  51. C. Li, J.J. Liu, M. Cheng, X.L. Fan, Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces. Compos. Part B-Eng. 116, 153–169 (2017)

    Article  Google Scholar 

  52. J.J. Liu, C. Li, X.L. Fan, L.H. Tong, Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory. Appl. Math. Comput. 45, 65–84 (2017)

    MathSciNet  MATH  Google Scholar 

  53. H.M. Numanoglu, B. Akgoz, O. Civalek, On dynamic analysis of nanorods. Int. J. Eng. Sci. 130, 33–50 (2018)

    Article  Google Scholar 

  54. A.N. Kounadis, J. Mallis, A. Sbarounis, Postbuckling analysis of columns resting on an elastic foundation. Arch. Appl. Mech. 75, 395–404 (2006)

    Article  ADS  MATH  Google Scholar 

  55. B. Akgoz, O. Civalek, Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J. Vib. Control 20, 606–616 (2014)

    Article  MathSciNet  Google Scholar 

  56. R. Ansari, R. Gholami, S. Sahmani, Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory. Arch. Appl. Mech. 83, 1439–1449 (2013)

    Article  ADS  MATH  Google Scholar 

  57. O. Civalek, B. Uzun, M.O. Yayli, B. Akgoz, Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. Eur. Phys. J. Plus 135, 381 (2020)

    Article  Google Scholar 

  58. Q. Wang, K.M. Liew, Application of nonlocal continuum mechanics to static analysis of micro and nano-structures. Phys. Lett. A 363, 236–242 (2007)

    Article  ADS  Google Scholar 

  59. J. Yoon, C.Q. Ru, A. Mioduchowski, Vibration of an embedded multiwall carbon nanotube. Compos. Sci. Technol. 63, 1533–1542 (2003)

    Article  Google Scholar 

  60. M.O. Yayli, Buckling analysis of a microbeam embedded in an elastic medium with deformable boundary conditions. IET Micro Nano Lett. 11, 741–745 (2016)

    Article  Google Scholar 

  61. M.O. Yayli, Buckling analysis of a cantilever single-walled carbon nanotube embedded in an elastic medium with an attached spring. IET Micro Nano Lett. 12, 255–259 (2017)

    Article  Google Scholar 

  62. M.O. Yayli, F. Yanik, S.Y. Kandemir, Longitudinal vibration of nanorods embedded in an elastic medium with elastic restraints at both ends. IET Micro Nano Lett. 10, 641–644 (2015)

    Article  Google Scholar 

  63. M.O. Yayli, On the axial vibration of carbon nanotubes with different boundary conditions. IET Micro Nano Lett. 9, 807–811 (2014)

    Article  Google Scholar 

  64. M.O. Yayli, A compact analytical method for vibration analysis of single-walled carbon nanotubes with restrained boundary conditions. J. Vib. Control 22, 2542–2555 (2016)

    Article  MathSciNet  Google Scholar 

  65. S.C. Pradhan, T. Murmu, Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory. Phys. Lett. A 373, 4182–4188 (2010)

    Article  MATH  Google Scholar 

  66. A. Bachtold, P. Hadley, T. Nakanihi, C. Dekker, Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001)

    Article  ADS  Google Scholar 

  67. K.A. Kiani, meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect. Int. J. Mech. Sci. 52, 1343–1356 (2010)

    Article  Google Scholar 

  68. S. Papargyri-Beskou, K.G. Tsepoura, D. Polyzos, D.E. Beskos, Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct. 2003(40), 385–400 (2003)

    Article  MATH  Google Scholar 

  69. R. Artan, A. Toksoz, Stability analysis of gradient elastic beams by the method of initial value. Arch. Appl. Mech. 18, 347–351 (2011)

    Google Scholar 

  70. M.O. Yayli, Stability analysis of gradient elastic microbeams with arbitrary boundary conditions. J. Mech. Sci. Technol. 29, 3373–3380 (2015)

    Article  Google Scholar 

  71. J.A. Loya, J. Aranda-Ruiz, J. Fernandez-Saez, Torsion of cracked nanorods using a nonlocal elasticity model. J. Phys. D Appl. Phys. 47(3), 115304 (2014)

    Article  ADS  Google Scholar 

  72. A.C. Eringen, E.S. Suhubi, Nonlinear theory of simple micro-elastic solids-I. Int. J. Eng. Sci. 2, 189–203 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  73. A.C. Eringen, Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  74. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  ADS  Google Scholar 

  75. R.A. Toupin, Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  76. C. Li, T.W. Chou, Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys. Rev. B 68, 073405 (2003)

    Article  ADS  Google Scholar 

  77. F. Yang, A.C.M. Chong, D.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  78. E.C. Aifantis, Strain gradient interpretation of size effects. Int. J. Fract. 95, 1–4 (1999)

    Article  Google Scholar 

  79. R.D. Mindlin, H.F. Tiersten, Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  80. M.E. Gurtin, J. Weissmuller, F. Larche, The general theory of curved deformable interfaces in solids at equilibrium. Phil. Mag. 78, 1093–1109 (1998)

    Article  Google Scholar 

  81. M. Arda, M. Aydogdu, Torsional statics and dynamics of nanotubes embedded in an elastic medium. Compos. Struct. 114, 80–91 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Busra Uzun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Civalek, Ö., Uzun, B. & Yayli, M.Ö. Torsional vibrations of functionally graded restrained nanotubes. Eur. Phys. J. Plus 137, 113 (2022). https://doi.org/10.1140/epjp/s13360-021-02309-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02309-8

Navigation