Skip to main content
Log in

Free vibration analysis of a rotationally restrained (FG) nanotube

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this study, free lateral vibration behavior of a functionally graded nanobeam in an elastic matrix with rotationally restrained ends is studied based on the Eringens’ nonlocal theory of elasticity formulated in differential form. Euler–Bernoulli beam theory, Fourier sine series and Stokes’ transformation are used to investigate the vibrational behavior of nanobeams with restrained boundary conditions. Although vibration based dynamical analysis of nanostructures is a widely investigated topic, there are only few studies that exist in the literature pertaining to the analysis of nanobeams with rotationally restrained boundary conditions. To investigate and analyze the effect of deformable boundary conditions on the lateral vibration of nanobeams, the Fourier coefficients obtained by using Stokes’ transformation. Explicit formulas are derived for the elastic nonlocal boundary conditions at the ends. A useful coefficient matrix is derived by using these equations. Moreover, the effects of some parameters such as functional gradient index, nonlocal parameter, and rotational restraints on the natural frequencies are studied and some conclusions are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ajayan PM, Lijima S (1992) Smallest carbon nanotube. Nature 358:23

    Article  Google Scholar 

  • Akbas SD (2018) Forced vibration analysis of cracked functionally graded microbeams. Adv Nano Res 6(1):39–55

    MathSciNet  Google Scholar 

  • Antonelli GA, Maris HJ, Malhotra SG, Harper JM (2002) Picosecond ultrasonics study of the vibrational modes of a nanostructure. J Appl Phys 91(5):3261–3267

    Article  Google Scholar 

  • Arash B, Wang Q (2012) A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput Mater Sci 51(1):303–313

    Article  Google Scholar 

  • Arda M, Aydogdu M (2014) Torsional statics and dynamics of nanotubes embedded in an elastic medium. Compos Struct 114:80–91

    Article  Google Scholar 

  • Arroyo M, Belytschko T (2005) Continuum mechanics modeling and simulation of carbon nanotubes. Meccanica 40(4–6):455–469

    Article  MathSciNet  MATH  Google Scholar 

  • Aydogdu M (2009) Axial vibration of the nanorods with the nonlocal continuum rod model. Phys E Low Dimens Syst Nanostruct 41(5):861–864

    Article  Google Scholar 

  • Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294(5545):1317–1320

    Article  Google Scholar 

  • Barretta R, Marotti de Sciarra F (2013) A nonlocal model for carbon nanotubes under axial loads. Adv Mater Sci Eng. https://doi.org/10.1155/2013/360935

    Google Scholar 

  • Barretta R, Brcic M, Canadija M, Luciano R, de Sciarra FM (2017) Application of gradient elasticity to armchair carbon nanotubes: size effects and constitutive parameters assessment. Eur J Mech A Solids 65:1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Brauns EB, Madaras ML, Coleman RS, Murphy CJ, Berg MA (2002) Complex local dynamics in DNA on the picosecond and nanosecond time scales. Phys Rev Lett 88(15):158101

    Article  Google Scholar 

  • Bunch JS, Van Der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Electromechanical resonators from graphene sheets. Science 315(5811):490–493

    Article  Google Scholar 

  • Chien WT, Chen CS, Chen HH (2006) Resonant frequency analysis of fixed-free single-walled carbon nanotube-based mass sensor. Sens Actuators A Phys 126(1):117–121

    Article  MathSciNet  Google Scholar 

  • Chiu HY, Hung P, Postma HWC, Bockrath M (2008) Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett 8(12):4342–4346

    Article  Google Scholar 

  • Chong ACM, Lam DCC (1999) Strain gradient plasticity effect in indentation hardness of polymers. J Mater Res 14:4103–4110

    Article  Google Scholar 

  • Chowdhury R, Adhikari S, Mitchell J (2009) Vibrating carbon nanotube based bio-sensors. Phys E Low Dimens Syst Nanostruct 42(2):104–109

    Article  Google Scholar 

  • Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384(6605):147

    Article  Google Scholar 

  • Demir C, Civalek O, Akgoz B (2010) Free vibration analysis of carbon nanotubes based on shear deformable beam theory by discrete singular convolution technique. Math Comput Appl 15(1):57–65

    MATH  Google Scholar 

  • Ebrahimi F, Mahmoodi F (2018) Vibration analysis of carbon nanotubes with multiple cracks in thermal environment. Adv Nano Res 6(1):57–80

    Google Scholar 

  • El-Borgi S, Rajendran P, Friswell MI, Trabelssi M, Reddy JN (2018) Torsional vibration of size-dependent viscoelastic rods using nonlocal strain and velocity gradient theory. Compos Struct 186:274–292

    Article  Google Scholar 

  • Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710

    Article  Google Scholar 

  • Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10:233–248

    Article  MathSciNet  MATH  Google Scholar 

  • Filiz S, Aydogdu M (2010) Axial vibration of carbon nanotube heterojunctions using nonlocal elasticity. Comput Mater Sci 49(3):619–627

    Article  Google Scholar 

  • Heireche H, Tounsi A, Benzair A, Mechab I (2008) Sound wave propagation in single-walled carbon nanotubes with initial axial stress. J Appl Phys 104(1):014301

    Article  Google Scholar 

  • Joshi AY, Harsha SP, Sharma SC (2010) Vibration signature analysis of single walled carbon nanotube based nanomechanical sensors. Phys E Low Dimens Syst Nanostruct 42(8):2115–2123

    Article  Google Scholar 

  • Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286(5447):2148–2150

    Article  Google Scholar 

  • Lau KT, Gu C, Hui D (2006) A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos Part B Eng 37(6):425–436

    Article  Google Scholar 

  • Lim CW, Yang Y (2010) New predictions of size-dependent nanoscale based on nonlocal elasticity for wave propagation in carbon nanotubes. J Comput Theor Nanosci 7(6):988–995

    Article  Google Scholar 

  • Lu P, Lee HP, Lu C, Zhang PQ (2007) Application of nonlocal beam models for carbon nanotubes. Int J Solids Struct 44(16):5289–5300

    Article  MATH  Google Scholar 

  • Mehdipour I, Barari A (2012) Why the center-point of bridged carbon nanotube length is the most mass sensitive location for mass attachment? Comput Mater Sci 55:136–141

    Article  Google Scholar 

  • Murmu T, Adhikari S, Wang CY (2011) Torsional vibration of carbon nanotube–buckyball systems based on nonlocal elasticity theory. Phys E Low Dimens Syst Nanostruct 43(6):1276–1280

    Article  Google Scholar 

  • Peddieson J, Buchanan GR, McNitt RP (2003) Application of nonlocal continuum models to nanotechnology. Int J Eng Sci 41(3–5):305–312

    Article  Google Scholar 

  • Pradhan SC, Murmu T (2009) Differential quadrature method for vibration analysis of beam on Winkler foundation based on nonlocal elastic theory. J Inst Eng (India) Metall Mater Eng Div 89:3–12

    Google Scholar 

  • Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS (2002) Mechanics of carbon nanotubes. Appl Mech Rev 55(6):495–533

    Article  Google Scholar 

  • Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45(2–8):288–307

    Article  MATH  Google Scholar 

  • Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nature materials 6(9):652

    Article  Google Scholar 

  • Sirtori C (2002) Applied physics: bridge for the terahertz gap. Nature 417(6885):132

    Article  Google Scholar 

  • Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner ST, Nguyen RS, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282

    Article  Google Scholar 

  • Sudak LJ (2003) Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J Appl Phys 94(11):7281–7287

    Article  Google Scholar 

  • Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912

    Article  Google Scholar 

  • Wagner HD, Lourie O, Feldman Y, Tenne R (1998) Stress induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl Phys Lett 72(2):188–190

    Article  Google Scholar 

  • Wan H, Delale F (2010) A structural mechanics approach for predicting the mechanical properties of carbon nanotubes. Meccanica 45(1):43–51

    Article  MATH  Google Scholar 

  • Yayli MO (2016) A compact analytical method for vibration analysis of single-walled carbon nanotubes with restrained boundary conditions. J Vib Control 22(10):2542–2555

    Article  MathSciNet  Google Scholar 

  • Yayli MO (2018a) An efficient solution method for the longitudinal vibration of nanorods with arbitrary boundary conditions via a hardening nonlocal approach. J Vib Control 24(11):2230–2246

    Article  MathSciNet  Google Scholar 

  • Yayli MÖ (2018b) Torsional vibrations of restrained nanotubes using modified couple stress theory. Microsyst Technol 24(8):3425–3435

    Article  Google Scholar 

  • Yayli MÖ (2018c) On the torsional vibrations of restrained nanotubes embedded in an elastic medium. J Braz Soc Mech Sci Eng 40(9):419

    Article  Google Scholar 

  • Yayli MÖ (2018d) Free vibration analysis of a single-walled carbon nanotube embedded in an elastic matrix under rotational restraints. Micro Nano Lett 13(2):202–206

    Article  MathSciNet  Google Scholar 

  • Yayli MÖ, Cercevik AE (2015) 1725. Axial vibration analysis of cracked nanorods with arbitrary boundary conditions. J Vibroeng 17(6):2907–2921

    Google Scholar 

  • Zhang YQ, Liu GR, Wang JS (2004) Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression. Phys Rev B 70(20):205430

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Özgür Yayli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yayli, M.Ö. Free vibration analysis of a rotationally restrained (FG) nanotube. Microsyst Technol 25, 3723–3734 (2019). https://doi.org/10.1007/s00542-019-04307-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-019-04307-4

Navigation