Skip to main content
Log in

Thermo-elastic buckling and post-buckling analysis of functionally graded thin plate and shell structures

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, we extend the Kirchhoff–Love model to thermal buckling and post-buckling analysis of functionally graded structures. The kernel idea of the proposed model consists of the consideration of large displacements and finite rotation to accurately model the thermal effects on buckling and post-buckling behavior of such structures. Both uniform and nonuniform temperature distributions are considered. Material properties of the FG structures are graded in the thickness direction and assumed to obey a power law distribution of the volume fraction of the constituents. The effectiveness and usefulness of the proposed model are highlighted through different numerical examples, and the effects of the volume fraction exponent, thermal loads, length-to-thickness ratio, boundary conditions and geometrical parameters on the buckling and post-buckling behavior of FGM structures are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Akbari M, Kiani Y, Eslami M (2015) Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports. Acta Mech 226:897–915

    MathSciNet  MATH  Google Scholar 

  2. Akgos B, Civalek O (2017) Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams. Compos B 129:77–87

    Google Scholar 

  3. Anh V, Bich D, Duc N (2015) Nonlinear buckling analysis of thin FGM annular spherical shells on elastic foundations under external pressure and thermal loads. Eur J Mech A/Solids 50:28–38

    MathSciNet  MATH  Google Scholar 

  4. Arefi M, Mohammadi M, Tabatabaeian A, Dimitri R, Tornabene F (2018) Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels. Steel Compos Struct 27:525–536

    Google Scholar 

  5. Barati M, Shahverdi H (2018) Nonlinear thermal vibration analysis of refined shear deformable FG nanoplates: two semi-analytical solutions. J Braz Soc Mech Sci Eng 40:64

    Google Scholar 

  6. Batoz J, Dhatt G (1990) Modélisation des structures par éléments finis. Herms-Lavoisier

  7. Bhagat V, Jeyaraj P (2016) Experimental investigation on buckling strength of cylindrical panel: effect of non-uniform temperature field. Procedia Eng 144:474–481

    Google Scholar 

  8. Bhagat V, Jeyaraj P, Murigendrappa S (2016) Buckling and free vibration characteristics of a uniformly heated isotropic cylindrical panel. Procedia Eng 144:474–481

    Google Scholar 

  9. Bouazza M, Tounsi A, Adda-Bedia E, Megueni A (2010) Thermoelastic stability analysis of functionally graded plates: an analytical approach. Comput Mater Sci 49:865–870

    Google Scholar 

  10. Carrera E, Brischetto S, Nali P (2011) Plates and shells for smart structures: classical and advanced theories for modeling and analysis. Wiley, New York

    MATH  Google Scholar 

  11. Chan D, Quan T, Kim S, Duc N (2019) Nonlinear dynamic response and vibration of shear deformable piezoelectric functionally graded truncated conical panel in thermal environments. Eur J Mech A/Solids 77:103795

    MathSciNet  MATH  Google Scholar 

  12. Dammak F, Abid S, Gakwaya A, Dhatt G (2005) A formulation of the non linear discrete Kirchhoff quadrilateral shell element with finite rotations and enhanced strains. Revue Europeenne des Elements Finis 14:7–31

    MATH  Google Scholar 

  13. Demir C, Civalek O (2017) A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix. Compos Struct 168:872–884

    Google Scholar 

  14. Dhatt G, Touzot G (1981) Une présentation de la méthode des éléments finis . Maloine S.A. Paris et Les Presses de l’Université de Laval Québec

  15. Duc N (2014) Nonlinear static and dynamic stability of functionally graded plates and shells. Vietnam National University Press, Hanoi

    Google Scholar 

  16. Duc N, Cong P (2013) Nonlinear postbuckling of symmetric S-FGM plates resting on elastic foundations using higher order shear deformation plate theory in thermal environments. Compos Struct 100:566–574

    Google Scholar 

  17. Duc N, Quan T (2012) Nonlinear stability analysis of double curved shallow FGM panel on elastic foundation in thermal environments. Mech Compos Mater 48:435–448

    Google Scholar 

  18. Duc N, Tung H (2010) Nonlinear analysis of stability for functionally graded cylindrical shells under axial compression. Comput Mater Sci 49:313–316

    Google Scholar 

  19. Duc N, Tung H (2011) Mechanical and thermal postbuckling of higher order shear deformable functionally graded plates on elastic foundations. Compos Struct 93:2874–2881

    Google Scholar 

  20. Duc N, Cong P, Anh V, Quang V, Tran P, Tuan N, Thinh N (2015a) Mechanical and thermal stability of eccentrically stiffened functionally graded conical shell panels resting on elastic foundations and in thermal environment. Compos Struct 132:597–609

    Google Scholar 

  21. Duc N, Tuan N, Tran P, Dao N, Dat N (2015) Nonlinear dynamic analysis of Sigmoid functionally graded circular cylindrical shells on elastic foundations using the third order shear deformation theory in thermal environments. Int J Mech Sci 101:338–348

    Google Scholar 

  22. Duc N, Kim S, Manh D, Nguyen P (2020a) Effect of eccentrically oblique stiffeners and temperature on the nonlinear static and dynamic response of S-FGM cylindrical panels. Thin Walled Struct 146:106438

    Google Scholar 

  23. Duc N, Kim S, Quan T, Manh D, Cuong N (2020b) Nonlinear buckling of eccentrically stiffened nanocomposite cylindrical panels in thermal environments. Thin Walled Struct 146:106428

    Google Scholar 

  24. Eslami M, Reza M, Jacobs A (2018) Buckling and postbuckling of beams, plates, and shells. Springer, Berlin

    MATH  Google Scholar 

  25. Frikha A, Dammak F (2017) Geometrically non-linear static analysis of functionally graded material shells with a discrete double directors shell element. Comput Methods Appl Mech Eng 315:1–24

    MathSciNet  MATH  Google Scholar 

  26. Farimani M, Mohadeszadeh M (2017) Thermo-elastic bending analysis of FGM rotating plate with axial grading and modified rule of mixture. J Braz Soc Mech Sci Eng 39:299–307

    Google Scholar 

  27. Frikha A, Zghal S, Dammak F (2018a) Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element. Aerosp Sci Technol 78:438–451

    MATH  Google Scholar 

  28. Frikha A, Zghal S, Dammak F (2018b) Finite rotation three and four nodes shell elements for functionally graded carbon nanotubes-reinforced thin composite shells analysis. Comput Methods Appl Mech Eng 329:289–311

    MathSciNet  MATH  Google Scholar 

  29. Frikha A, Wali M, Hajlaoui A, Dammak F (2016) Dynamic response of functionally graded material shells with a discrete double directors shell element. Compos Struct 154:385–395

    Google Scholar 

  30. Ganapathi M, Prakash T (2006) Thermal buckling of simply supported functionally graded skew plates. Comput Struct 74:247–50

    Google Scholar 

  31. Ganapathi M, Prakash T, Sundararajan N (2006) Influence of functionally graded material on buckling of skew plates under mechanical loads. J Eng Mech 132:902–905

    Google Scholar 

  32. Gowda RMS, Pandalai KAV (1970) Thermal buckling of orthotropic plates. Stud Struct Mech 9–44

  33. Hajlaoui A, Wali M, Ben Jdidia M, Dammak F (2016) An improved enhanced solid shell element for static and buckling analysis of shell structures. Mech Ind 17:510

    Google Scholar 

  34. Hajlaoui A, Triki E, Frikha A, Wali M, Dammak F (2017) Nonlinear dynamics analysis of FGM shell structures with a higher order shear strain enhanced solid-shell element. Lat Am J Solids Struct 14:72–91

    Google Scholar 

  35. Jaberzadeh E, Azhari M, Boroomand B (2013) Thermal buckling of functionally graded skew and trapezoidal plates with different boundary conditions using the element-free Galerkin method. Eur J Mech A/Solids 42:18–26

    MathSciNet  MATH  Google Scholar 

  36. Javaheri R, Eslami M (2002a) Buckling of functionally graded plates under in-plane compressive loading. ZAMM 82:277–283

    MATH  Google Scholar 

  37. Javaheri R, Eslami M (2002b) Thermal buckling of functionally graded plates. AIAA J 40:162–169

    MATH  Google Scholar 

  38. Javaheri R, Eslami M (2002c) Thermal buckling of functionally graded plates based on higher order theory. J Therm Stress 25:603–625

    Google Scholar 

  39. Koizumi M (1993) Functionally gradient materials the concept of FGM. Ceram Trans 34:3–10

    Google Scholar 

  40. Koizumi M (1997) FGM activities in Japan. Compos B 28:1–4

    Google Scholar 

  41. Kandasamy R, Dimitri R, Tornabene F (2016) Numerical study on the free vibration and thermal buckling behavior of moderately thick functionally graded structures in thermal environments. Compos Struct 157:207–221

    Google Scholar 

  42. Kant T, Babu C (2000) Thermal buckling analysis of skew fibre-reinforced composite and sandwich plates using shear deformable finite element models. Compos Struct 49:77–85

    Google Scholar 

  43. Kar V, Panda S, Mahapatra T (2016) Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties. Adv Mater Res 5:205–221

    Google Scholar 

  44. Khoa N, Thiem H, Duc N (2019) Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal–ceramic–metal layers in thermal environment using Reddy’s third-order shear deformation shell theory. Mech Adv Mater Struct 26:248–259

    Google Scholar 

  45. Liew K, Zhao X, Lee Y (2012) Postbuckling responses of functionally graded cylindrical shells under axial compression and thermal loads. Compos B 43:1621–1630

    Google Scholar 

  46. Mars J, Koubaa S, Wali M, Dammak F (2017) Numerical analysis of geometrically non-linear behavior of functionally graded shells. Lat Am J Solids Struct 14:1952–1978

    Google Scholar 

  47. Miyamoto Y, Kaysser W, Rabin B, Kawasaki A, Ford R (1999) Functionally graded materials: design, processing and applications. Springer US

  48. Nejati M, Dimitri R, Tornabene F, Hossein Yas M (2017) Thermal buckling of nanocomposite stiffened cylindrical shells reinforced by functionally graded wavy carbon nanotubes with temperature-dependent properties. Appl Sci 7:1223

    Google Scholar 

  49. Nguyen P, Quang V, Anh V, Duc N (2019) Nonlinear vibration of carbon nanotube reinforced composite truncated conical shells in thermal environment. Int J Struct Stabil Dyn 19:1950158

    MathSciNet  Google Scholar 

  50. Panda S, Mahapatra T, Kar V (2017) Nonlinear finite element solution of post-buckling responses of FGM panel structure under elevated thermal load and TD and TID properties. MATEC Web Conf 109:05005

    Google Scholar 

  51. Park J, Kim J (2006) Thermal postbuckling and vibration analyses of functionally graded plates. J Sound Vib 289:77–93

    MATH  Google Scholar 

  52. Prabhu M, Durvasula S (1976) Thermal post-buckling characteristics of clamped skew plates. Comput Struct 6:177–185

    MATH  Google Scholar 

  53. Prakash T, Singha M, Ganapathi M (2008) Thermal postbuckling analysis of FGM skew plates. Eng Struct 30:22–32

    Google Scholar 

  54. Reddy J (2003) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, New York

    Google Scholar 

  55. Reddy J, Chin C (1998) Thermomechanical analysis of functionally graded cylinders and plates. J Therm Stress 21:593–626

    Google Scholar 

  56. Shen H (2007) Thermal postbuckling behavior of shear deformable FGM plates with temperature-dependent properties. Int J Mech Sci 49:466–478

    Google Scholar 

  57. Shen H (2014) Nonlinear vibration of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments. Comput Struct 111:291–300

    Google Scholar 

  58. Simo J, Fox D (1989) On a stress resultants geometrically exact shell model. Part I: formulation and optimal parametrization. Comput Methods Appl Mech Eng 72:267–304

    MATH  Google Scholar 

  59. Suresh S, Mortensen A (1997) Functionally graded metals and metalceramiccomposites Part 2. Thermomechanical behavior. Int Mater Rev 42:85–116

    Google Scholar 

  60. Thangaratnam K, Palaninathan A, Ramachandran J (1989) Thermal buckling of composite laminated plates. Comput Struct 32:1117–1124

    MATH  Google Scholar 

  61. Tornabene F, Fantuzzi N, Bacciocchi M (2016) Higher-order structural theories for the static analysis of doubly-curved laminated composite panels reinforced by curvilinear fibers. Thin Wall Struct 102:222–245

    Google Scholar 

  62. Tornabene F, Brischetto S, Fantuzzi N, Viola E (2015) Numerical and exact models for free vibration analysis of cylindrical and spherical shell panels. Compos B 81:231–250

    Google Scholar 

  63. Trabelsi S, Frikha A, Zghal S, Dammak F (2018) Thermal post-buckling analysis of functionally graded material structures using a modified FSDT. Int J Mech Sci 144:74–89

    Google Scholar 

  64. Trabelsi S, Frikha A, Zghal S, Dammak F (2019) A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Eng Struct 178:444–459

    Google Scholar 

  65. Tran L, Thai C, Nguyen-Xuan H (2013) An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates. Finite Elem Anal Des 73:65–76

    Google Scholar 

  66. Van Do V, Lee C (2018) Nonlinear thermal buckling analyses of functionally graded circular plates using higher-order shear deformation theory with a new transverse shear function and an enhanced mesh-free method. Acta Mech 229:3787–3811

    MathSciNet  Google Scholar 

  67. Van Do V, Ong T, Lee C (2019) Isogeometric analysis for nonlinear buckling of FGM plates under various types of thermal gradients. Thin Wall Struct 137:448–462

    Google Scholar 

  68. Vuong P, Duc N (2019) Nonlinear vibration of FGM moderately thick toroidal shell segment within the framework of Reddy’s third order-shear deformation shell theory. Int J Mech Mater Des. https://doi.org/10.1007/s10999-019-09473-x

    Article  Google Scholar 

  69. Wali M, Hentati T, Jaraya A, Dammak F (2015) Free vibration analysis of FGM shell structures with a discrete double directors shell element. Compos Struct 125:295–303

    Google Scholar 

  70. Yousefitabar M, Matapouri M (2017) Thermally induced buckling of thin annular FGM plates. J Braz Soc Mech Sci Eng 39:969–980

    Google Scholar 

  71. Zghal S, Frikha A, Dammak F (2017) Static analysis of functionally graded carbon nanotube-reinforced plate and shell structures. Compos Struct 176:1107–1123

    MATH  Google Scholar 

  72. Zghal S, Frikha A, Dammak F (2018a) Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures. Appl Math Model 53:132–155

    MathSciNet  MATH  Google Scholar 

  73. Zghal S, Frikha A, Dammak F (2018b) Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels. Compos B 150:165–183

    MATH  Google Scholar 

  74. Zghal S, Frikha A, Dammak F (2018c) Non-linear bending analysis of nanocomposites reinforced by graphene-nanotubes with finite shell element and membrane enhancement. Eng Struct 158:95–109

    Google Scholar 

  75. Zhang D (2017) Thermal post-buckling analysis of functionally graded material elliptical plates based on high-order shear deformation theory. Mech Adv Mater Struct 24:142–148

    Google Scholar 

  76. Zhao X, Liew K (2010) A mesh-free method for analysis of the thermal and mechanical buckling of functionally graded cylindrical shell panels. Comput Mech 45:297–310

    MATH  Google Scholar 

  77. Zhao X, Lee Y, Liew K (2009) Mechanical and thermal buckling analysis of functionally graded plates. Compos Struct 90:161–71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourour Trabelsi.

Additional information

Technical Editor: Paulo de Tarso Rocha de Mendonça, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trabelsi, S., Zghal, S. & Dammak, F. Thermo-elastic buckling and post-buckling analysis of functionally graded thin plate and shell structures. J Braz. Soc. Mech. Sci. Eng. 42, 233 (2020). https://doi.org/10.1007/s40430-020-02314-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02314-5

Keywords

Navigation