Skip to main content
Log in

A plausible mechanism of muscle stabilization in stall conditions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We address the well-known limitation of the Huxley and Simmons 1971 (HS) model. It is the statement that at physiological value of stiffness in the actomyosin complex, the distribution of the myosin motors becomes microscopically uniform (all the motors are either in pre- or post-power stroke conformation) after an infinitesimal displacement from the stall (isometric contractions) conditions. Such uniform behavior at the fiber level would generate a negative slope in the \(T_2-\delta \) relationship (in the nomenclature of the HS paper), not observed experimentally. This negative slope means inhomogeneity of the macroscopic sarcomere configuration, which is also not observed. To address this controversial prediction of the HS theory, we explore the possibility that the slope of the \(T_2-\delta \) curve is, in fact, positive due to an interaction between neighboring cross-bridges. We show that such interaction can potentially destabilize the uniform configurations (all pre or all post) by making the non-uniform configurations energetically preferable. We argue that, despite the presence of other factors, which can in principle also ensure the microscopic inhomogeneity of cross-bridge configurations, the implied interaction is an important player in muscle mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. While it would have been more realistic to assume that this ratio is around 70-30 [71], we have chosen to present our results only in the most simple setting that can be easily corrected by the appropriate adjustment of the parameter \(v_0\).

References

  1. M. Caruel, L. Truskinovsky, Physics of muscle contraction. Rep. Prog. Phys. 81(3), 036602 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  2. T.L. Hill, Theoretical formalism for the sliding filament model of contraction of striated muscle part i. Prog. Biophys. Mole. Biol. 28, 267–340 (1974)

    Article  Google Scholar 

  3. A.F. Huxley, R.M. Simmons, Proposed mechanism of force generation in striated muscle. Nature 233(5321), 533–538 (1971)

    Article  ADS  Google Scholar 

  4. R.J. Podolsky, Kinetics of muscular contraction?: the approach to the steady state. Nature 188, 666–668 (1960)

    Article  ADS  Google Scholar 

  5. G. Piazzesi, M. Reconditi, M. Linari, L. Lucii, Y.-B. Sun, T. Narayanan, P. Boesecke, V. Lombardi, M. Irving, Mechanism of force generation by myosin heads in skeletal muscle. Nature 415(6872), 659–662 (2002)

    Article  ADS  Google Scholar 

  6. G. Piazzesi, M. Reconditi, M. Linari, L. Lucii, P. Bianco, E. Brunello, V. Decostre, A. Stewart, D. Gore, T. Irving, M. Irving, V. Lombardi, Skeletal muscle performance determined by modulation of number of myosin motors rather than motor force or stroke size. Cell 131(4), 784–795 (2007)

    Article  Google Scholar 

  7. M. Irving, V. Lombardi, G. Piazzesi, M.A. Ferenczi, Myosin head movements are synchronous with the elementary force-generating process in muscle. Nature 357(6374), 156–158 (1992)

    Article  ADS  Google Scholar 

  8. R. Sheshka, L. Truskinovsky, Power-Stroke-Driven Muscle Contraction (Springer, Cham, 2020), pp. 117–207

    MATH  Google Scholar 

  9. M. Caruel, J.-M. Allain, L. Truskinovsky, Mechanics of collective unfolding. J. Mech. Phys. Solids 76, 237–259 (2015)

    Article  ADS  Google Scholar 

  10. M. Caruel, L. Truskinovsky, Statistical mechanics of the huxley-simmons model. Phys. Rev. E 93, 062407 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  11. L. Marcucci, L. Truskinovsky, Mechanics of the power stroke in myosin ii. Phys. Rev. E 81, 051915 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  12. L. Marcucci, L. Truskinovsky, Muscle contraction: a mechanical perspective. Eur. Phys. J. E. 32(4), 411–418 (2010)

    Article  Google Scholar 

  13. E. Brunello, M. Caremani, L. Melli, M. Linari, M. Fernandez-Martinez, T. Narayanan, M. Irving, G. Piazzesi, V. Lombardi, M. Reconditi, The contributions of filaments and cross-bridges to sarcomere compliance in skeletal muscle. J. Physiol. 592(17), 3881–3899 (2014)

    Article  Google Scholar 

  14. M. Linari, I. Dobbie, M. Reconditi, N. Koubassova, M. Irving, G. Piazzesi, V. Lombardi, The stiffness of skeletal muscle in isometric contraction and rigor: the fraction of myosin heads bound to actin. Biophys. J. 74(5), 2459–2473 (1998)

    Article  ADS  Google Scholar 

  15. M. Caruel, J.-M. Allain, L. Truskinovsky, Muscle as a metamaterial operating near a critical point. Phys. Rev. Lett. 110(24), 248103 (2013)

    Article  ADS  Google Scholar 

  16. A.F. Huxley, S. Tideswell, Filament compliance and tension transients in muscle. J. Muscle Res. Cell Motil. 17(4), 507–511 (1996)

    Article  Google Scholar 

  17. A. Vilfan, T. Duke, Instabilities in the transient response of muscle. Biophys. J. 85(2), 818–827 (2003)

    Article  Google Scholar 

  18. H. Borja da Rocha, Collective Effects in Muscle Contraction and Cellular Adhesion (Université Paris-Saclay, Theses Sept., 2018)

  19. E. Brunello, M. Reconditi, R. Elangovan, M. Linari, Y.B. Sun, T. Narayanan, P. Panine, G. Piazzesi, M. Irving, V. Lombardi, Skeletal muscle resists stretch by rapid binding of the second motor domain of myosin to actin. Proc. Natl. Acad. Sci. USA 104(50), 20114–20119 (2007)

    Article  ADS  Google Scholar 

  20. L.E. Ford, A.F. Huxley, R.M. Simmons, The relation between stiffness and filament overlap in stimulated frog muscle fibres. J. Physiol. 311, 219–249 (1981)

    Article  Google Scholar 

  21. A.F. Huxley, Mechanics and models of the myosin motor. Philos. Trans. Royal Soc. B: Biol. Sci. 355(1396), 433–440 (2000)

    Article  Google Scholar 

  22. G. Puglisi, L. Truskinovsky, Mechanics of a discrete chain with bi-stable elements. J. Mech. Phys. Solids 48(1), 1–27 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. D.E. Rassier, I. Pavlov, Contractile Characteristics of Sarcomeres Arranged in Series or Mechanically Isolated from Myofibrils (Springer, New York, 2010), pp. 123–140

    Google Scholar 

  24. R.T. Tregear, M.C. Reedy, Y.E. Goldman, K.A. Taylor, H. Winkler, C. Franzini-Armstrong, H. Sasaki, C. Lucaveche, M.K. Reedy, Cross-bridge number, position, and angle in target zones of cryofixed isometrically active insect flight muscle. Biophys. J. 86(5), 3009–3019 (2004)

    Article  ADS  Google Scholar 

  25. S. Wu, J. Liu, M.C. Reedy, R.J. Perz-Edwards, R.T. Tregear, H. Winkler, C. Franzini-Armstrong, H. Sasaki, C. Lucaveche, Y.E. Goldman, M.K. Reedy, K.A. Taylor, Structural changes in isometrically contracting insect flight muscle trapped following a mechanical perturbation. PloS one 7(6), e39422–e39422 (2012)

    Article  ADS  Google Scholar 

  26. M. Reconditi, Recent improvements in small angle x-ray diffraction for the study of muscle physiology. Rep. Prog. Phys. 69(10), 2709–2759 (2006)

    Article  ADS  Google Scholar 

  27. R.T. Tregear, R.J. Edwards, T.C. Irving, K.J. Poole, M.C. Reedy, H. Schmitz, E. Towns-Andrews, M.K. Reedy, X-ray diffraction indicates that active cross-bridges bind to actin target zones in insect flight muscle. Biophys. J. 74(3), 1439–1451 (1998)

    Article  ADS  Google Scholar 

  28. M. Caremani, L. Melli, M. Dolfi, V. Lombardi, M. Linari, Force and number of myosin motors during muscle shortening and the coupling with the release of the atp hydrolysis products. J. Physiol. 593(15), 3313–3332 (2015)

    Article  Google Scholar 

  29. G. Piazzesi, V. Lombardi, A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle. Biophys. J. 68(5), 1966–1979 (1995)

    Article  ADS  Google Scholar 

  30. D.A. Smith, M.A. Geeves, J. Sleep, S.M. Mijailovich, Towards a unified theory of muscle contraction i: Foundations. Ann. Biomed. Eng. 36(10), 1624–1640 (2008)

    Article  Google Scholar 

  31. D.A. Smith, S.M. Mijailovich, Toward a unified theory of muscle contraction ii Predictions with the mean-field approximation. Ann. Biomed. Eng. 36(8), 1353 (2008)

    Article  Google Scholar 

  32. H. Borja da Rocha, L. Truskinovsky, Functionality of disorder in muscle mechanics. Phys. Rev. Lett. 122, 088103 (2019)

    Article  ADS  Google Scholar 

  33. R. Sheshka, P. Recho, L. Truskinovsky, Rigidity generation by nonthermal fluctuations. Phys. Rev. E 93, 052604 (2016)

    Article  ADS  Google Scholar 

  34. J.C. Bonner, J.F. Nagle, Phase behavior of models with competing interactions. J. Appl. Phys. 42(4), 1280–1282 (1971)

    Article  ADS  Google Scholar 

  35. A. Campa, G. Gori, V. Hovhannisyan, S. Ruffo, A. Trombettoni, Ising chains with competing interactions in the presence of long-range couplings. J. Phys. A: Math. Theor. 52(34), 344002 (2019)

    Article  MathSciNet  Google Scholar 

  36. M. Kardar, Crossover to equivalent-neighbor multicritical behavior in arbitrary dimensions. Phys. Rev. B 28, 244–246 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  37. J.F. Nagle, Ising chain with competing interactions. Phys. Rev. A 2, 2124–2128 (1970)

    Article  ADS  Google Scholar 

  38. P.A. Rikvold, G. Brown, S. Miyashita, C. Omand, M. Nishino, Equilibrium, metastability, and hysteresis in a model spin-crossover material with nearest-neighbor antiferromagnetic-like and long-range ferromagnetic-like interactions. Phys. Rev. B 93, 064109 (2016)

    Article  ADS  Google Scholar 

  39. J. Barré, D. Mukamel, S. Ruffo, Inequivalence of ensembles in a system with long-range interactions. Phys. Rev. Lett. 87, 030601 (2001)

    Article  ADS  Google Scholar 

  40. J. Barré, D. Mukamel, S. Ruffo, Ensemble Inequivalence in Mean-Field Models of Magnetism (Springer, Berlin, 2002), pp. 45–67

    Google Scholar 

  41. F. Bouchet, S. Gupta, and D. Mukamel. Thermodynamics and dynamics of systems with long-range interactions. Physica A: Statistical Mechanics and its Applications, 389(20):4389 – 4405, 2010. Proceedings of the 12th International Summer School on Fundamental Problems in Statistical Physics

  42. L. Marcucci, T. Washio, T. Yanagida, Including thermal fluctuations in actomyosin stable states increases the predicted force per motor and macroscopic efficiency in muscle modelling. PLoS Comput. Biol. 12(9), 1–20 (2016)

    Article  Google Scholar 

  43. M. Ostilli, F. Mukhamedov, 1D Three-state mean-field potts model with first- and second-order phase transitions. Physica A 555, 124415 (2020)

    Article  MathSciNet  Google Scholar 

  44. J. Yeomans, Statistical Mechanics of Phase Transitions (Clarendon Press, 1992)

  45. J.M. Squire, D.M. Paul, E.P. Morris, Myosin and Actin Filaments in Muscle: Structures and Interactions (Springer, Cham, 2017), pp. 319–371

    Google Scholar 

  46. M. Kaya, Y. Tani, T. Washio, T. Hisada, H. Higuchi, Coordinated force generation of skeletal myosins in myofilaments through motor coupling. Nat. Commun. 8, 16036 (2017)

    Article  ADS  Google Scholar 

  47. M.V. Razumova, A.E. Bukatina, K.B. Campbell, Different myofilament nearest-neighbor interactions have distinctive effects on contractile behavior. Biophys. J. 78(6), 3120–3137 (2000)

    Article  Google Scholar 

  48. J.M. Squire, Muscle myosin filaments: cores, crowns and couplings. Biophys. Rev. 1(3), 149 (2009)

    Article  Google Scholar 

  49. A. Månsson, D. Rassier, G. Tsiavaliaris, Poorly understood aspects of striated muscle contraction. BioMed. Res. Int. 2015, 245154 (2015)

    Article  Google Scholar 

  50. B.C.W. Tanner, T.L. Daniel, M. Regnier, Sarcomere lattice geometry influences cooperative myosin binding in muscle. PLOS Comput. Biol. 3(7), 1–17 (2007)

    Article  Google Scholar 

  51. K. Oshima, Y. Takezawa, Y. Sugimoto, T. Kobayashi, T.C. Irving, K. Wakabayashi, Axial dispositions and conformations of myosin crossbridges along thick filaments in relaxed and contracting states of vertebrate striated muscles by x-ray fiber diffraction. J. Mol. Biol. 367(1), 275–301 (2007)

    Article  Google Scholar 

  52. W.O. Hancock, L.L. Huntsman, A.M. Gordon, Models of calcium activation account for differences between skeletal and cardiac force redevelopment kinetics. J. Muscle Res. Cell Motil. 18(6), 671–681 (1997)

    Article  Google Scholar 

  53. T.L. Hill, E. Eisenberg, L. Greene, Theoretical model for the cooperative equilibrium binding of myosin subfragment 1 to the actin-troponin-tropomyosin complex. Proc. Natl. Acad. Sci. 77(6), 3186–3190 (1980)

    Article  ADS  Google Scholar 

  54. S.M. Mijailovich, J.J. Fredberg, J.P. Butler, On the theory of muscle contraction: filament extensibility and the development of isometric force and stiffness. Biophys. J. 71(3), 1475–1484 (1996)

    Article  ADS  Google Scholar 

  55. J.J. Rice, G. Stolovitzky, Y. Tu, P.P. de Tombe, Ising model of cardiac thin filament activation with nearest-neighbor cooperative interactions. Biophys. J. 84(2), 897–909 (2003)

    Article  ADS  Google Scholar 

  56. K.S. Campbell, Filament compliance effects can explain tension overshoots during force development. Biophys. J. 91(11), 4102–4109 (2006)

    Article  ADS  Google Scholar 

  57. P.B. Chase, J.M. Macpherson, T.L. Daniel, A spatially explicit nanomechanical model of the half-sarcomere: myofilament compliance affects Ca2+-activation. Ann. Biomed. Eng. 32(11), 1559–1568 (2004)

    Article  Google Scholar 

  58. T.L. Daniel, A.C. Trimble, P.B. Chase, Compliant realignment of binding sites in muscle: transient behavior and mechanical tuning. Biophys. J. 74(4), 1611–1621 (1998)

    Article  ADS  Google Scholar 

  59. J.D. Powers, P. Bianco, I. Pertici, M. Reconditi, V. Lombardi, G. Piazzesi, Contracting striated muscle has a dynamic i-band spring with an undamped stiffness 100 times larger than the passive stiffness. J. Physiol. 598(2), 331–345 (2020)

    Article  Google Scholar 

  60. P.-G. de Gennes, Maximum pull out force on dna hybrids. Comptes Rendus de l’Académie des Sci. - Series IV - Phys. 2(10), 1505–1508 (2001)

    ADS  Google Scholar 

  61. X. Ren, L. Truskinovsky, Finite scale microstructures in nonlocal elasticity. J. Elast. Phys. Sci. Solids 59(1), 319–355 (2000)

    MathSciNet  MATH  Google Scholar 

  62. P.M. Chaikin, T.C. Lubensky, T.A. Witten, Principles of Condensed Matter Physics, 10th edn. (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  63. K. Hirose, T. Wakabayashi, Structural change of crossbridges of rabbit skeletal muscle during isometric contraction. J. Muscle Res. Cell Motil. 14(4), 432–445 (1993)

    Article  Google Scholar 

  64. K. Midde, R. Luchowski, H. Das, J. Fedorick, V. Dumka, I. Gryczynski, Z. Gryczynski, J. Borejdo, Evidence for pre- and post-power stroke of cross-bridges of contracting skeletal myofibrils. Biophys. J. 100(4), 1024–1033 (2011)

    Article  ADS  Google Scholar 

  65. M. Reedy, Visualizing myosin’s power stroke in muscle contraction. J. Cell Sci. 113(20), 3551–3562 (2000)

    Article  Google Scholar 

  66. D.D. Thomas, S. Ramachandran, O. Roopnarine, D.W. Hayden, E.M. Ostap, The mechanism of force generation in myosin: a disorder-to-order transition, coupled to internal Structural changes. Biophys. J. 68(4 Suppl), 135S–141S (1995)

    Google Scholar 

  67. M. Reconditi, M. Caremani, F. Pinzauti, J.D. Powers, T. Narayanan, G.J.M. Stienen, M. Linari, V. Lombardi, G. Piazzesi, Myosin filament activation in the heart is tuned to the mechanical task. Proc. Natl. Acad. Sci. 114(12), 3240–3245 (2017)

    Article  Google Scholar 

  68. G. Piazzesi, F. Francini, M. Linari, V. Lombardi, Tension transients during steady lengthening of tetanized muscle fibres of the frog. J. Physiol 445, 659–711 (1992)

    Article  Google Scholar 

  69. M. Reconditi, M. Linari, L. Lucii, A. Stewart, Y.-B. Sun, P. Boesecke, T. Narayanan, R.F. Fischetti, T. Irving, G. Piazzesi, M. Irving, V. Lombardi, The myosin motor in muscle generates a smaller and slower working stroke at higher load. Nature 428(6982), 578–581 (2004)

    Article  ADS  Google Scholar 

  70. N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group (Frontiers in physics. Addison-Wesley, Advanced Book Program, 1992)

  71. M. Irving, G. Piazzesi, L. Lucii, Y.-B. Sun, J.J. Harford, I.M. Dobbie, M.A. Ferenczi, M. Reconditi, V. Lombardi, Conformation of the myosin motor during force generation in skeletal muscle. Nat. Struct. Biol. 7(6), 482–485 (2000)

    Article  Google Scholar 

  72. K. Christensen, N.R. Moloney, Complexity and Criticality, 1st edn. (World Scientific Publishing Company, Singapore, 2005)

    Book  MATH  Google Scholar 

  73. R. Pathria, P. Beale, Statistical Mechanics (Elsevier, Hoboken, 1996)

    MATH  Google Scholar 

  74. A. Campa, T. Dauxois, S. Ruffo, Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 480(3–6), 57–159 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  75. M. Linari, E. Brunello, M. Reconditi, L. Fusi, M. Caremani, T. Narayanan, G. Piazzesi, V. Lombardi, M. Irving, Force generation by skeletal muscle is controlled by mechanosensing in myosin filaments. Nature 528(7581), 276–279 (2015)

    Article  ADS  Google Scholar 

  76. K.A. Taylor, H. Schmitz, M.C. Reedy, Y.E. Goldman, C. Franzini-Armstrong, H. Sasaki, R.T. Tregear, K. Poole, C. Lucaveche, R.J. Edwards, L.F. Chen, H. Winkler, M.K. Reedy, Tomographic 3D reconstruction of quick-frozen, \(Ca>sup<2+>/sup>\)-activated contracting insect flight muscle. Cell 99(4), 421–431 (1999)

    Article  Google Scholar 

  77. J. Crangle, Solid,State Magnetism (Springer, Berlin, 2012)

    Google Scholar 

  78. A.A. Zvyagin, G.A. Skorobagat’ko, On the mean-field theory of a two-sublattice antiferromagnet. Low Temp. Phys. 32(7), 644–649 (2006)

    Article  ADS  Google Scholar 

  79. R. Agra, F. van Wijland, E. Trizac, On the free energy within the mean-field approximation. Euro. J. Phys. 27(2), 407–412 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Marco Linari and Matthieu Caruel for helpful discussion. H.B.R. was supported by a PhD fellowship from Ecole Polytechnique; L. T. was supported by the grant ANR-10-IDEX-0001-02 PSL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hudson Borja da Rocha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, H.B.d., Truskinovsky, L. A plausible mechanism of muscle stabilization in stall conditions. Eur. Phys. J. Plus 136, 683 (2021). https://doi.org/10.1140/epjp/s13360-021-01646-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01646-y

Navigation