Skip to main content
Log in

Towards a Unified Theory of Muscle Contraction. I: Foundations

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Molecular models of contractility in striated muscle require an integrated description of the action of myosin motors, firstly in the filament lattice of the half-sarcomere. Existing models do not adequately reflect the biochemistry of the myosin motor and its sarcomeric environment. The biochemical actin–myosin–ATP cycle is reviewed, and we propose a model cycle with two 4- to 5-nm working strokes, where phosphate is released slowly after the first stroke. A smaller third stroke is associated with ATP-induced detachment from actin. A comprehensive model is defined by applying such a cycle to all myosin-S1 heads in the half-sarcomere, subject to generic constraints as follows: (a) all strain-dependent kinetics required for actin–myosin interactions are derived from reaction-energy landscapes and applied to dimeric myosin, (b) actin–myosin interactions in the half-sarcomere are controlled by matching rules derived from the structure of the filaments, so that each dimer may be associated with a target zone of three actin sites, and (c) the myosin and actin filaments are treated as elastically extensible. Numerical predictions for such a model are presented in the following paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alberty R. A. (1968) Effect of pH and metal ion concentration on the equilibrium hydrolysis of adenosine triphosphatase to adenosine diphosphate. J. Biol. Chem. 243:1337–1343

    PubMed  CAS  Google Scholar 

  2. Bagshaw C. R. (1987) Are two heads better than one?. Nature 326:746–747

    Article  PubMed  CAS  Google Scholar 

  3. Bagshaw C. R., Trentham D. R. (1974) The characterization of myosin-product complexes and of product-release steps during the magnesium-ion dependent adenosine triphosphatase reaction. Biochem. J. 141:331–349

    PubMed  CAS  Google Scholar 

  4. Berger C. E., Fagnant P. M., Heizmann S., Trybus K. M., Geeves M. A. (2001) ADP binding induces an asymmetry between the heads of unphosphorylated myosin. J. Biol. Chem. 276:23240–23245

    Article  PubMed  CAS  Google Scholar 

  5. Bordas J., Svennson A., Rothery M., Lowy J., Diakun G., Boesecke P. (1999) Extensibility and symmetry of actin filaments in contracting muscle. Biophys. J. 77:3197–3207

    PubMed  CAS  Google Scholar 

  6. Brunello E., Reconditi M., Elangovan R., Linari M., Sun Y. -B., Narayanan T., Panine P., Piazzesi G., Irving M., Lombardi V. (2007) Skeletal muscle resists stretch by rapid binding of the second motor domain of myosin to actin. Proc. Natl. Acad. Sci. USA 104:20114–20119

    Article  PubMed  CAS  Google Scholar 

  7. Capitanio M., Canepari M., Cacciafesta P., Lombardi V., Cicchi R., Maffei M., Pavone F. S., Bottinelli R. (2006) Two independent mechanical events in the interaction cycle of skeletal muscle myosin with actin. Proc. Natl. Acad. Sci. USA 103:87–92

    Article  PubMed  CAS  Google Scholar 

  8. Chase P. B., Macpherson J. M., Daniel T. L. (2004) A spatially explicit nanomechanical model of the half-sarcomere: myofilament compliance affects Ca2+-activation. Ann. Biomed. Eng. 32:1559–1568

    Article  PubMed  Google Scholar 

  9. Conibear P., Geeves M. A. (1998) Cooperativity between the two heads of rabbit skeletal muscle heavy meromyosin in binding to actin. Biophys. J. 75:926–937

    PubMed  CAS  Google Scholar 

  10. Cooke R. (1997) Actomyosin interaction in striated muscle. Physiol. Rev. 77:597–671

    Google Scholar 

  11. Cooke R. (2004) The sliding filament model: 1972–2004. J. Gen. Physiol. 123:643–656

    Article  PubMed  CAS  Google Scholar 

  12. Cooke R., Franks K. (1980) All myosin heads form bonds with actin in rigor rabbit skeletal muscle. Biochemistry 19:2265–2269

    Article  PubMed  CAS  Google Scholar 

  13. Dantzig J. A., Goldman Y. E., Millar N. C., Lacktis J., Homsher E. (1992) Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibers. J. Physiol. 451:247–278

    PubMed  CAS  Google Scholar 

  14. Dominguez R., Freyzon Y., Trybus K. M., Cohen C. (1998) Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94:559–571

    Article  PubMed  CAS  Google Scholar 

  15. Edman K. A. P. (1975) Mechanical deactivation induced by active shortening in isolated muscle fibres of the frog. J. Physiol. (London) 246:255–275

    CAS  Google Scholar 

  16. Edman K. A. P., Mansson A., Caputo C. (1997) The biphasic force-velocity relationship in frog muscle fibres and its evaluation in terms of cross-bridge function. J. Physiol. 503 Pt 1:141–156

    Article  PubMed  CAS  Google Scholar 

  17. Eisenberg E., Hill T. L. (1985) Muscle contraction and free energy transduction in biological systems. Science 227:999–1006

    Article  PubMed  CAS  Google Scholar 

  18. Eisenberg E., Hill T. L., Chen Y. D. (1980) Cross-bridge model of muscle contraction. Biophys. J. 29:195–227

    PubMed  CAS  Google Scholar 

  19. Ferenczi M. A., Bershitsky S. Y., Koubassova N., Siththanandan V., Helsby W. I., Panine P., Roessie M., Narayanan T., Tsaturyan A. K. (2005) The “Roll and Lock” mechanism of force generation in muscle. Structure 13:131–141

    Article  PubMed  CAS  Google Scholar 

  20. Finer J. T., Simmons R. M., Spudich J. A. (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368:113–119

    Article  PubMed  CAS  Google Scholar 

  21. Ford L. E., Huxley A. F., Simmons R. M. (1977) Tension responses to sudden length change in stimulated frog muscle fibres near slack length. J. Physiol. 269:441–515

    PubMed  CAS  Google Scholar 

  22. Ford L. E., Huxley A. F., Simmons R. M. (1981) The relation between stiffness and filament overlap in stimulated frog muscle fibres. J. Physiol. 311:218–249

    Google Scholar 

  23. Geeves M. A. (1991) The dynamics of actin and myosin association and the crossbridge model of muscle contraction. Biochem. J. 274:1–19

    PubMed  CAS  Google Scholar 

  24. Geeves M. A., Fedorov R., Manstein D. J. (2005) Molecular mechanism of actomyosin-based motility. Cell. Mol. Life Sci. 62:1462–1477

    Article  PubMed  CAS  Google Scholar 

  25. Geeves M. A., Holmes K. C. (1999) Structural mechanism of muscle contraction. Annu. Rev. Biochem. 68:6876–728

    Article  PubMed  CAS  Google Scholar 

  26. Geeves M. A., Holmes K. C. (2005) The molecular mechanism of muscle contraction. Adv. Protein Chem. 71:161–169

    Article  PubMed  CAS  Google Scholar 

  27. Gollub J., Cremo C., Cooke R. (1996) ADP release produces a rotation of the neck region of smooth muscle myosin but not skeletal myosin. Nat. Struct. Biol. 3:796–802

    Article  PubMed  CAS  Google Scholar 

  28. Hanson J., Huxley H. E. (1953) Structural basis of the cross-striations in muscle. Nature 172:530–532

    Article  PubMed  CAS  Google Scholar 

  29. Hill T. L. (1974) Theoretical formalism for the sliding filament model of contraction of striated muscle, Part I. Prog. Phys. Mol. Biol. 28:267–340

    Article  CAS  Google Scholar 

  30. Houdusse A., Szent-Gyorgi A. G., Cohen C. (2000) Three conformational states of scallop myosin S1. Proc. Nat. Acad. Sci. USA 97:11238–11243

    Article  PubMed  CAS  Google Scholar 

  31. Hudson S. L., Harford J. J., Denny R. C., Squire J. M. (1997) Myosin head configuration in relaxed fish muscle: resting state myosin heads must swing axially by up to 150A or turn upside down to reach rigor. J. Mol. Biol. 273:440–455

    Article  PubMed  CAS  Google Scholar 

  32. Hussan J., de Tombe P. P., Rice J. J. (2006) A spatially detailed myofilament model as a basis for large-scale biological simulations. IBM J. Res. Dev. 50:583–600

    Article  CAS  Google Scholar 

  33. Huxley A. F. (1957) Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7:255–318

    PubMed  CAS  Google Scholar 

  34. Huxley H. E. (1969) The mechanism of muscular contraction. Science 164:1356–1366

    Article  PubMed  CAS  Google Scholar 

  35. Huxley A. F., Simmons R. M. (1971) Proposed mechanism of force generation in striated muscle. Nature 233:533–538

    Article  PubMed  CAS  Google Scholar 

  36. Huxley H. E., Stewart A., Sosa H., Irving M. (1994) X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophys. J. 67:2411–2421

    PubMed  CAS  Google Scholar 

  37. Huxley A. F., Tideswell S. (1996) Filament compliance and tension transients in muscle. J. Muscle Res. Cell Motil. 17:507–511

    Article  PubMed  CAS  Google Scholar 

  38. Ito K., Liu X., Katayama E., Uyeda T. Q. P. (1999) Cooperativity between two heads of dictyostelium myosin II in in-vitro motility and ATP hydrolysis. Biophys. J. 76:985–992

    PubMed  CAS  Google Scholar 

  39. Kabsch, W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. (1990) Atomic structure of the actin: DNase I complex. Nature 347:37–44

    Article  PubMed  CAS  Google Scholar 

  40. Knight P. J. (1996) Dynamic behavior of the head-tail junction of myosin. J. Mol. Biol. 255:269–274

    Article  PubMed  CAS  Google Scholar 

  41. Kohler J., Winkler G., Schulte I., Scholz T., McKenna W., Brenner B., Kraft T. (2002) Mutation of the myosin converter domain alters cross-bridge elasticity. Proc. Natl. Acad. Sci. USA 99:3557–3562

    Article  PubMed  CAS  Google Scholar 

  42. Kojima H., Ishijima A., Yanagida T. (1994) Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro manipulation. Proc. Natl. Acad. Sci. USA 91:12962–12966

    Article  PubMed  CAS  Google Scholar 

  43. Lauzon A. M., Fagnant P. M., Warshaw D. M., Trybus K. M. (2001) Coiled-coil unwinding at the smooth muscle myosin head-rod junction is required for optimal mechanical performance. Biophys. J. 80:1900–1904

    PubMed  CAS  Google Scholar 

  44. Lewalle A., Steffen W., Stevenson O., Ouyang Z., Sleep J. (2008) Single molecule measurement of the stiffness of the rigor myosin head. Biophys. J. 94:2160–2169

    Article  PubMed  CAS  Google Scholar 

  45. Linari M., Caremani M., Piperio C., Brandt P., Lombardi V. (2007) Stiffness and fraction of myosin motors responsible for active force in permeabilised muscle fibers from rabbit psoas. Biophys. J. 92:2476–2490

    Article  PubMed  CAS  Google Scholar 

  46. Lombardi V., Piazzesi G., Reconditi M., Linari M., Lucii L., Stewart A., Sun Y. -B., Boesecke P., Naryanan T., Irving T., Irving M. (2004) X-ray diffraction studies of the contractile mechanism in single muscle fibres. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359:1883–1893

    Article  PubMed  CAS  Google Scholar 

  47. Luther P. K. (2004) Evolution of the muscle lattice in the vertebrate kingdom. Microsc. Anal. 18:9–11

    Google Scholar 

  48. Luther P. K., Squire J. M. (1990) Three-dimensional structure of the vertebrate muscle A-band. II The myosin filament superlattice. J. Mol. Biol. 141:409–439

    Article  Google Scholar 

  49. Lymn R. W., Taylor E. W. (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10:4617–4624

    Article  PubMed  CAS  Google Scholar 

  50. Malnasi-Czizmadia A., Pearson D. S., Kovacs M., Woolley R. J., Geeves M. A., Bagshaw C. R. (2001) Kinetic resolution of a conformational transition and the ATP hydrolysis step using relaxation methods with a Dictyostelium myosin II mutant containing a single tryptophan residue. Biochemistry 40:12727–12737

    Article  CAS  Google Scholar 

  51. Martyn D. A., Chase P. B., Regnier M., Gordon A. M. (2002) A simple model with myofilament compliance predicts activation-dependent crossbridge kinetics in skinned skeletal fibers. Biophys. J. 83:3425–3434

    PubMed  CAS  Google Scholar 

  52. Matsubara I., Goldman Y. E., Simmons R. M. (1984) Changes in the lateral filament spacing of skinned muscle fibres when cross-bridges attach. J. Mol. Biol. 173:15–33

    Article  PubMed  CAS  Google Scholar 

  53. Mijailovich S. M., Fredberg J. J., Butler J. P. (1996) On the theory of muscle contraction: filament extensibility and the development of isometric force and stiffness. Biophys. J. 71:1475–84

    PubMed  CAS  Google Scholar 

  54. Millar N. C., Homsher E. (1990) The effect of phosphate and calcium on force generation in glycerinated rabbit skeletal muscle fibers. J. Biol. Chem. 265:20234–20240

    PubMed  CAS  Google Scholar 

  55. Nishizaka T., Seo R., Tadakuma H., Kinosita K., Ishiwata S. (2000) Characterization of single actomyosin rigor bonds: load dependence of lifetime and mechanical properties. Biophys. J. 79:962–974

    PubMed  CAS  Google Scholar 

  56. Nyitrai M., Rossi R., Adamek N., Pellegrino M. A., Bottinelli R., Geeves M. A. (2006) What limits the velocity of fast skeletal muscle contraction in mammals?. J. Mol. Biol. 355:432–442

    Article  PubMed  CAS  Google Scholar 

  57. Offer G., Knight P. J., Burgess S. A., Alamo L., Padron R. (2000) A new model for the surface arrangement of myosin molecules in tarantula thick filaments. J. Mol. Biol. 298:239–260

    Article  PubMed  CAS  Google Scholar 

  58. Pate E., Cooke R. (1989) A model of crossbridge action: the effects of ATP, ADP and Pi. J. Muscle Res. Cell Motil. 10:181–196

    Article  PubMed  CAS  Google Scholar 

  59. Pate E., Naber N., Matuska M., Franks-Skiba K., Cooke R. (1997) Opening of the myosin nucleotide triphosphate binding domain during the ATPase cycle. Biochem. 36:12155–12166

    Article  PubMed  CAS  Google Scholar 

  60. Piazzesi G., Lombardi V. (1995) A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle. Biophys. J. 68:1966–1979

    Article  PubMed  CAS  Google Scholar 

  61. Piazzesi G., Lucii L., Lombardi V. (2002) The size and speed of the working stroke of muscle myosin and its dependence on the force. J. Physiol. 545 (Pt 1):145–151

    Article  PubMed  CAS  Google Scholar 

  62. Piazzesi G., Reconditi M., Linari M., Lucii L., Bianco P., Brunello E., Decostre V., Stewart A., Gore D. B., Irving T. C., Irving M., Lombardi V. (2007) Skeletal muscle performance determined by modulation of number of myosin motors rather than motor force or stroke size. Cell 131:784–795

    Article  PubMed  CAS  Google Scholar 

  63. Piazzesi G., Reconditi M., Linari M., Lucii L., Sun Y. -B., Narayanan T., Boesecke P., Lombardi V., Irving M. (2002) Mechanism of force generation by myosin heads in skeletal muscle. Nature 415:659–662

    Article  PubMed  CAS  Google Scholar 

  64. Ranatunga K. W., Coupland M. E., Mutungi G. (2002) An asymmetry in the phosphate dependence of tension transients induced by length perturbations in mammalian (rabbit psoas) muscle fibres. J. Physiol. 542(Pt 3):899–910

    Article  PubMed  CAS  Google Scholar 

  65. Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. (1993) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261:58–65

    Article  PubMed  CAS  Google Scholar 

  66. Rayment I., Rypniewski W. R., Schmidt-Base K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58

    Article  PubMed  CAS  Google Scholar 

  67. Regnier M., Morris C., Homsher E. (1995) Regulation of the cross-bridge transition from a weakly to a strongly bound state in skinned rabbit muscle fibers. Am. J. Physiol. 269:C1532–C1539

    PubMed  CAS  Google Scholar 

  68. Sleep J. A., Hutton R. L. (1980) Exchange between inorganic phosphates and adenosine 5’-triphosphate in the medium by actomyosin subfragment 1. Biochemistry 19:1276–1283

    Article  PubMed  CAS  Google Scholar 

  69. Smith D. A., Sleep J. (2004) Mechanokinetics of rapid tension recovery in muscle: the myosin working stroke is followed by a slower release of phosphate. Biophys. J. 87:442–456

    Article  PubMed  CAS  Google Scholar 

  70. Smith D., Sleep J. (2006) Strain-dependent kinetics of the myosin working stroke, and how they could be probed with optical trap experiments. Biophys. J. 91:3359–3369

    Article  PubMed  CAS  Google Scholar 

  71. Steffen W., Smith D. A., Simmons R. M., Sleep J. (2001) Mapping the actin filament with myosin. Proc. Natl. Acad. Sci. USA 98:14949–14954

    Article  PubMed  CAS  Google Scholar 

  72. Steffen W., Smith D., Sleep J. (2003) The working stroke upon myosin-nucleotide complexes binding to actin. Proc. Natl. Acad. Sci. USA 100:6434–6439

    Article  PubMed  CAS  Google Scholar 

  73. Stein L. A., Schwarz R. P., Chock P. B., Eisenberg E. (1979) Mechanism of actomyosin triphosphatase. Evidence that adenosine 5’-triphosphatase hydrolysis can occur without dissociation of the actomyosin complex. Biochemistry 18:3895–3909

    Article  PubMed  CAS  Google Scholar 

  74. Tanner B. C. W., Daniel T. L., Regnier M. (2007) Sarcomere lattice geometry influences cooperative myosin binding in muscle. PLoS Comp. Biol. 3:1195–1211

    Article  CAS  Google Scholar 

  75. Taylor E. W. (1979) Mechanism of actomyosin ATPase and the problem of muscle contraction. Crit. Rev. Biochem. 6:103–164

    Article  Google Scholar 

  76. Taylor K. A., Schmitz H., Reedy M. C., Goldman Y. E., Franzini-Armstrong C., Sasaki H., Tregear R. T., Poole K., Lucaveche C., Edwards R. J., Chen L. F., Winkler H., Reedy M. K. (1999) Tomographic 3D reconstruction of quick-frozen, Ca2+ activated contracting insect flight muscle. Cell 99:421–431

    Article  PubMed  CAS  Google Scholar 

  77. Telley I. A., Denoth J. (2007) Sarcomere dynamics during muscular contraction and their implications to muscle function. J. Muscle Res. Cell Motil. 28:89–104

    Article  PubMed  Google Scholar 

  78. Tregear R. T., Reedy M. C., Goldman Y. E., Taylor K. A., Winkler H., Franzini-Armstrong C., Sasaki H., Lucaveche C., Reedy M. K. (2004) Cross-bridge number, position, and angle in target zones of cryofixed isometrically active insect flight muscle. Biophys. J. 86:3009–3019

    PubMed  CAS  Google Scholar 

  79. Vandenboom R., Hannon J. D., Sieck G. C. (2002) Isotonic force modulates force redevelopment rate of intact frog muscle fibres: evidence for cross-bridge induced thin filament activation. J. Physiol. 543(Pt 2):555–566

    Article  PubMed  CAS  Google Scholar 

  80. Veigel C., Coluccio L. M., Jontes J. D., Sparrow J. C., Milligan R. A., Molloy J. E. (1999) The motor protein myosin-I produces its working stroke in two steps. Nature 398:530–533

    Article  PubMed  CAS  Google Scholar 

  81. Veigel C., Wang F., Sellers J. R., Molloy J. E. (2002) The gated gait of the processive molecular motor myosin V. Nat. Cell Biol. 4:59–65

    Article  PubMed  CAS  Google Scholar 

  82. Wakabayshi K., Sugimoto Y., Tanaka H., Ueno Y., Takezawa Y., Amemiya Y. (1994) X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys. J. 67:2422–2435

    Google Scholar 

  83. White H. D., Belknap B., Webb M. R. (1997) Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate. Biochemistry 36:11828–11836

    Article  PubMed  CAS  Google Scholar 

  84. Whittaker, M., E. Wilson-Kubatek, J. E. Smith, L. Faust, R. A. Milligan, and H. L. Sweeney. A 35-A movement of smooth muscle myosin on ADP release. Nature 378:748–751, 1995

    Google Scholar 

  85. Wood J. E., Mann R. W. (1981) A sliding-filament cross-bridge ensemble model of muscle contraction for mechanical transients. Math. Biosciences 57:211–263

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge helpful discussions with many people, in particular P. Bennett, K. Burton, M. Irving, P. Luther, A. Mansson, H. Matheiss, G. Offer, V. Ovchinnikov, K.W. Ranatunga, and R.M. Simmons, who have contributed to the evolution of this paper. This work was carried out under a Bioengineering Research Partnership of the National Institutes of Health (Grant no. R01 AR048776). All authors acknowledge financial support from this program. M.A. Geeves is also supported by the Wellcome Trust (Program Grant 07002), and J. Sleep by the Medical Research Council (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.A. Smith.

Appendix

Appendix

The Simplest Matching Conditions

For a given pair of nearest-neighbor myosin and actin filaments, the following prescription for matching heads to actin sites uses selection rules, defined by discrete cut-offs for the extent of longitudinal and azimuthal mismatches. The chosen site is assumed to be the center of a 3-site target zone. These rules are formulated for single myosin heads; they also apply to dimers with the obvious restriction that the two heads compete for a given site.

Longitudinal matching is achieved if \({\vert}x\vert < d_{\rm co}\), a cut-off distance, or

$$ \vert X_{n}^{\rm A}-X_{m}^{\rm M}\vert < d_{\rm co}\quad (\hbox{axial head-site match})$$
(A1)

in the relaxed lattice. Heads in adjacent layers cannot compete for the same site if d co < a/6 (7.15 nm), a condition which seems eminently reasonable for myosin II.

Angular mismatches in the azimuthal plane involve the orientations of head and actin site relative to the rungs of the ladder (Fig. 7). The maximum head-ladder mismatch Δϕco should be above 20° to avoid a high fraction of inactive heads, and less than 30° to stop the head from exploring different F-actins, in which case the mapping would not be unique. The chosen actin site can be matched to the ladder with an angular tolerance of 13°, since adjacent monomeric sites on the same strand differ in angle by 2π/13 (27.7°). Ladders and F-actins in the unit cell are labeled by k and α as described in the main text. Let θkα be the angle of the kth ladder radiating from the F-actin labeled by α, so θk1 = (k−1)2π/3 and θk2 = θk1 + π (measured clockwise from the vertical in Fig. 7). In terms of the polar coordinates of Eqs. (9) and (10), these matching conditions are

$$ |\phi_{l\mu}^{\rm M}-\theta_{{k}\alpha}-\pi| < \Updelta \phi_{\rm co}\quad (\hbox{angular head-ladder match}), $$
(A2a)
$$ \hbox{min}|\phi_{n}^{\rm A}-\theta_{{k}\alpha}| \quad (\hbox{angular ladder-site match}) $$
(A2b)

provided angular differences are adjusted to [−π,π). Equation (A2a) gives the head-ladder map μ = μ k α(l) of the main text, and is tabulated in Table 1. This mapping is hard-wired by the lattice and the starting orientation of the crowns. Taken together, Eqs. (A1) and (A2) give the mapping n = n map(m,k,α) from head m to site n via the ladder (k,α); this mapping changes with the length of the sarcomere.

Table 1 The angular ladder-head map for the 2:1 filament lattice with ‘3-start’ F-myosin crowns and ϕ M11 = 0

To summarize: as long as d co < 7 nm and Δϕco < 30°, the mapping is 1–0 or 1–1; not all heads can be mapped to sites, but two heads cannot be mapped to the same site. In detail: (i) Each head can be matched to only one ladder, so it cannot map to sites on different F-actins. (ii) Each ‘rung’ of the ladder can map to only actin site at most. (iii) Different heads on the same crown cannot select the same actin site because they select different ladders. (iv) Heads in adjacent layers on the same F-myosin cannot select the same site, although their 40° difference in azimuthal orientation may allow them to select the same ladder. (v) Heads on the three F-myosins surrounding a given F-actin generally address different actin sites, because angular matching to ladders whose orientations differ by 120° implies a mean spacing of 120/27.7 = 4.33 sites. This is sufficient to accommodate nonoverlapping zones of three sites. (vi) Because the 43-nm F-myosin repeat exceeds the 36-nm F-actin repeat, some heads cannot be longitudinally matched to any site (Fig. 1c).

The above matching rules are not unique. They were constructed to give tight angular matching of heads to sites via the azimuthal orientation of the ladder. With this condition, the range of longitudinal matching within the 7.0-nm limit can be determined kinetically by the strain dependence of the binding rate. Loose longitudinal binding occurs with the ‘swing-roll-lock’ mechanism when it \(\eta \gg 1\).

In the presence of filament motion, Eq. (A1) is replaced by

$$ |x_{{m,n}\alpha}(t)| < d_{\rm co}, $$
(A3)

with x m,nα(t) defined by Eq. (15). In modeling, this condition should be applied to all detached heads after each time-integration step.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D., Geeves, M., Sleep, J. et al. Towards a Unified Theory of Muscle Contraction. I: Foundations. Ann Biomed Eng 36, 1624–1640 (2008). https://doi.org/10.1007/s10439-008-9536-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9536-6

Keywords

Navigation