Skip to main content
Log in

A heuristic resolution of the Abraham–Minkowski controversy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper reviews the history and origin of the Abraham–Minkowski controversy and points out that it is a continuation of the controversy over the speed of light in medium. Upon considering an aircraft flying at a constant speed along the great-circle route from the perspective of a geosynchronous space station, we show that the A–M controversy arises from non-local observation. The relative motion refractive index and the gravitational field refractive index are defined by the space–time metric tensor, which reveals the A–M controversy hidden in special and general relativity. As another example, we take light propagating over the surface of the sun and show that Minkowski and Abraham forces are responsible for the gravitational deflection of light and the Shapiro time delay, respectively. Overall, we heuristically conclude that non-local observation is the cause of the A–M controversy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. U. Leonhardt, Optics-momentum in an uncertain light. Nature 444(7121), 823–824 (2006)

    Article  ADS  Google Scholar 

  2. A. Cho, Century-long debate over momentum of light resolved? Science 327(5969), 1067 (2010)

    Article  Google Scholar 

  3. H. Minkowski, “Die grundgleichungen für die elektromagnetischen vorgänge in bewegten körpern,” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch–Physikalische Klasse, 53–111 (1908)

  4. M. Abraham, Zur elektrodynamik bewegter körper. Rendiconti del Circolo Matematico di Palermo 28(1), 1–28 (1909)

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Barlow, On the torque produced by a beam of light in oblique refraction through a glass plate. Proc. R. Soc. A Math. Phys. Eng. Sci. 87(592), 1–16 (1912)

    ADS  Google Scholar 

  6. R.V. Jones, Radiation pressure in a refracting medium. Nature 167(4246), 439–440 (1951)

    Article  ADS  Google Scholar 

  7. R.V. Jones, J.C.S. Richards, The pressure of radiation in a refracting medium. Proc. R. Soc. A Math. Phys. Eng. Sci. 221(1147), 480–498 (1954)

    ADS  Google Scholar 

  8. R.V. Jones, B. Leslie, The measurement of optical radiation pressure in dispersive media. Proc. R. Soc. A Math. Phys. Eng. Sci. 360(1702), 347–363 (1978)

    ADS  Google Scholar 

  9. A. Ashkin, J.M. Dziedzic, Radiation pressure on a free liquid surface. Phys. Rev. Lett. 30(4), 139–142 (1973)

    Article  ADS  Google Scholar 

  10. N.G.C. Astrath, L.C. Malacarne, M.L. Baesso, G.V.B. Lukasievicz, S.E. Bialkowski, Unravelling the effects of radiation forces in water. Nat. Commun. 5(4363), 1–6 (2014)

    Google Scholar 

  11. G. Verma, K.P. Singh, Universal long-range nanometric bending of water by light. Phys. Rev. Lett. 115(14), 143902 (2015)

    Article  ADS  Google Scholar 

  12. O.A. Capeloto, V.S. Zanutol, L.C. Malacarnel, M.L. Baesso, G.V.B. Lukasievicz, S.E. Bialkowski, N.G.C. Astrath, Quantitative assessment of radiation force effect at the dielectric air–liquid interface. Sci. Rep. 6, 20515 (2016)

    Article  ADS  Google Scholar 

  13. G. Verma, K. Chaudhary, K.P. Singh, Nanomechanical effects of light unveil photons momentum in medium. Sci. Rep. 7, 42554 (2017)

    Article  ADS  Google Scholar 

  14. L. Zhang, W. She, N. Peng, U. Leonhardt, Experimental evidence for Abraham pressure of light. New J. Phys. 17, 053035 (2015)

    Article  ADS  Google Scholar 

  15. A.F. Gibson, M.F. Kimmitt, A.O. Koohian, D.E. Evans, G.F.D. Levy, A study of radiation pressure in a refractive medium by the photon drag effect. Proc. R. Soc. A Math. Phys. Eng. Sci 370(1742), 303–311 (1980)

    ADS  Google Scholar 

  16. M. Kristensen, J.P. Woerdman, Is photon angular momentum conserved in a dielectric medium? Phys. Rev. Lett. 72(14), 2171–2174 (1994)

    Article  ADS  Google Scholar 

  17. G.K. Campbell, A.E. Leanhardt, J. Mun, M. Boyd, E.W. Streed, W. Ketterle, D.E. Pritchard, Photon recoil momentum in dispersive media. Phys. Rev. Lett. 94(17), 170403 (2005)

    Article  ADS  Google Scholar 

  18. Z. Wang, P. Wang, Y. Xu, Crucial experiment to resolve Abraham–Minkowski controversy. Optik 122(22), 1994–1996 (2011)

    Article  ADS  Google Scholar 

  19. F.A. Schaberle, L.A. Reis, C. Serpa, L.G. Arnaut, “Photon momentum transfer at water/air interfaces under total internal reflection. New J. Phys. 21(3), 033013 (2019)

    Article  ADS  Google Scholar 

  20. G.B. Walker, D.G. Lahoz, Experimental observation of Abraham force in a dielectric. Nature 253(5490), 339–340 (1975)

    Article  ADS  Google Scholar 

  21. G.B. Walker, D.G. Lahoz, G. Walker, Measurement of the Abraham force in a barium titanate specimen. Can. J. Phys. 53(23), 2577–2586 (1975)

    Article  ADS  Google Scholar 

  22. G.B. Walker, G. Walker, Mechanical forces in a dielectric due to electromagnetic fields. Can. J. Phys. 55(23), 2121–2127 (1977)

    Article  ADS  Google Scholar 

  23. D.G. Lahoz, G.M. Graham, Measurement of forces related to electromagnetic momentum in material media at low frequencies. Can. J. Phys. 57(5), 667–676 (1979)

    Article  ADS  Google Scholar 

  24. W. She, J. Yu, R. Feng, Observation of a push force on the end face of a nanometer silica filament exerted by outgoing light. Phys. Rev. Lett. 101(24), 243601 (2008)

    Article  ADS  Google Scholar 

  25. G.L.J.A. Rikken, B.A. van Tiggelen, Observation of the intrinsic Abraham force in time-varying magnetic and electric fields. Phys. Rev. Lett. 108(23), 230402 (2012)

    Article  ADS  Google Scholar 

  26. H. Choi, M. Park, D.S. Elliott, K. Oh, Optomechanical measurement of the Abraham force in an adiabatic liquid core optical fiber waveguide. Phys. Rev. A 95(5), 053817 (2017)

    Article  ADS  Google Scholar 

  27. A. Kundu, R. Rani, K.S. Hazra, Graphene oxide demonstrates experimental confirmation of Abraham pressure on solid surface. Sci. Rep. 7, 42538 (2017)

    Article  ADS  Google Scholar 

  28. J.P. Gordon, Radiation forces and momenta in dielectric media. Phys. Rev. A 8(1), 14–21 (1973)

    Article  ADS  Google Scholar 

  29. H. Lai, K. Young, Response of a liquid surface to the passage of an intense laser pulse. Phys. Rev. A 14(6), 2329–2333 (1976)

    Article  ADS  Google Scholar 

  30. P. Lorrain, The Abraham force: comments on two recent experiments. Can. J. Phys. 58(5), 683–686 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. G.M. Graham, D.G. Lahoz, Comments on “The Abraham force: comments on two recent experiments.” Can. J. Phys. 58(11), 1543–1543 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Mansuripur, Comment on “Observation of a push force on the end face of a nanometer silica filament exerted by outgoing light.” Phys. Rev. Lett. 103(1), 019301 (2009)

    Article  ADS  Google Scholar 

  33. I. Brevik, Comment on “Observation of a push force on the end face of a nanometer silica filament exerted by outgoing light.” Phys. Rev. Lett. 103(21), 219301 (2009)

    Article  ADS  Google Scholar 

  34. M. Partanen, T. Häyrynen, J. Oksanen, J. Tulkki, Photon mass drag and the momentum of light in a medium. Phys. Rev. A 95(6), 063850 (2017)

    Article  ADS  Google Scholar 

  35. I. Brevik, Analysis of recent interpretations of the Abraham–Minkowski problem. Phys. Rev. A 98(4), 043847 (2018)

    Article  ADS  Google Scholar 

  36. M. Partanen, J. Tulkki, Comment on “Analysis of recent interpretations of the Abraham–Minkowski problem.” Phys. Rev. A 100(1), 017801 (2019)

    Article  ADS  Google Scholar 

  37. I. Brevik, Reply to “Comment on ‘Analysis of recent interpretations of the Abraham-Minkowski problem.’” Phys. Rev. A 100(1), 017802 (2019)

    Article  ADS  Google Scholar 

  38. K.J. Webb, Dependence of the radiation pressure on the background refractive index. Phys. Rev. Lett. 111(4), 043602 (2013)

    Article  ADS  Google Scholar 

  39. C. Baxter, R. Loudon, Radiation pressure and the photon momentum in dielectrics. J. Mod. Opt. 57(10), 830–842 (2010)

    Article  ADS  MATH  Google Scholar 

  40. N.L. Balazs, The energy–momentum tensor of the electromagnetic field inside matter. Phys. Rev. 91(2), 408–411 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. W. Shockley, A “Try simplest cases” resolution of the Abraham–Minkowski controversy on electromagnetic momentum in matter. Proc. Natl. Acad. Sci. USA 60(3), 807–813 (1968)

    Article  ADS  Google Scholar 

  42. H.M. Lai, Electromagnetic momentum in static fields and the Abraham–Minkowski controversy. Am. J. Phys. 48(8), 658–659 (1980)

    Article  ADS  Google Scholar 

  43. E.A. Hinds, S.M. Barnett, Momentum exchange between light and a single atom: Abraham or Minkowski? Phys. Rev. Lett. 102(5), 050403 (2009)

    Article  ADS  Google Scholar 

  44. M.G. Silveirinha, Reexamination of the Abraham–Minkowski dilemma. Phys. Rev. A 96(3), 033831 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  45. I. Brevik, Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor. Phys. Rep. 52(3), 133–201 (1979)

    Article  ADS  Google Scholar 

  46. M.J. Padgett, On diffraction within a dielectric medium as an example of the Minkowski formulation of optical momentum. Opt. Express 16(25), 20864–20868 (2008)

    Article  ADS  Google Scholar 

  47. B.A. Kemp, T.M. Grzegorczyk, The observable pressure of light in dielectric fluids. Opt. Lett. 36(4), 493–495 (2011)

    Article  ADS  Google Scholar 

  48. C. Wang, Self-consistent theory for a plane wave in a moving medium and light-momentum criterion. Can. J. Phys. 93(12), 1510–1522 (2015)

    Article  ADS  Google Scholar 

  49. C. Qiu, W. Ding, M.R.C. Mahdy, D. Gao, T. Zhang, F.C. Cheong, A. Dogariu, Z. Wang, C. Teck Lim, Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams. Light Sci. Appl. 4, e278 (2015)

    Article  Google Scholar 

  50. D. Saikia, Lorentz gamma factor from vacuum to medium and Minkowski momentum of a photon. AIP Adv. 8(8), 085026 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  51. V.P. Torchigin, Momentum of a wave of any physical nature in a context of the Abraham–Minkowski dilemma. Optik 187, 148–151 (2019)

    Article  ADS  Google Scholar 

  52. S.M. Barnett, Resolution of the Abraham–Minkowski dilemma. Phys. Rev. Lett. 104(7), 070401 (2010)

    Article  ADS  Google Scholar 

  53. C.J. Sheppard, B.A. Kemp, Optical pressure deduced from energy relations within relativistic formulations of electrodynamics. Phys. Rev. A 89(1), 013825 (2014)

    Article  ADS  Google Scholar 

  54. U. Leonhardt, Abraham and Minkowski momenta in the optically induced motion of fluids. Phys. Rev. A 90(3), 033801 (2014)

    Article  ADS  Google Scholar 

  55. P.L. Saldanha, J.S.O. Filho, Hidden momentum and the Abraham–Minkowski debate. Phys. Rev. A 95(4), 043804 (2017)

    Article  ADS  Google Scholar 

  56. M. Partanen, J. Tulkki, Mass-polariton theory of sharing the total angular momentum of light between the field and matter. Phys. Rev. A 98(3), 033813 (2018)

    Article  ADS  Google Scholar 

  57. R. Peierls, The momentum of light in a refracting medium. Proc. R. Soc. A Math. Phys. Eng. Sci. 347(1651), 475–491 (1976)

    ADS  MathSciNet  Google Scholar 

  58. G.B. Walker, G. Walker, Mechanical forces of electromagnetic origin. Nature 263(5576), 401 (1976)

    Article  ADS  Google Scholar 

  59. H. Wong, K. Young, Momentum of light in a refracting medium. Am. J. Phys. 45(2), 195–198 (1977)

    Article  ADS  Google Scholar 

  60. P.W. Milonnil, R.W. Boyd, Recoil and photon momentum in a dielectric. Laser Phys. 15(10), 1432–1438 (2005)

    Google Scholar 

  61. D.H. Bradshaw, Z. Shi, R.W. Boyd, P.W. Milonni, Electromagnetic momenta and forces in dispersive dielectric media. Opt. Commun. 283(5), 650–656 (2010)

    Article  ADS  Google Scholar 

  62. J. Yu, C. Chen, Y. Zhai, Z. Chen, J. Zhang, L. Wu, F. Huang, Y. Xiao, Total longitudinal momentum in a dispersive optical waveguide. Opt. Express 19(25), 25263–25278 (2011)

    Article  ADS  Google Scholar 

  63. G. Feng, J. Huang, M. Yi, Composite refractive index on electromagnetic wave propagating in spherical medium. IEEE Trans. Antennas Propag. 68(3), 2297–2303 (2020)

    Article  ADS  Google Scholar 

  64. H. Helfgott, M. Helfgott, A noncalculus proof that Fermat’s principle of least time implies the law of refraction. Am. J. Phys. 70(12), 1224–1225 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  65. A. Kwan, J. Dudley, E. Lantz, Who really discovered Snell’s law? Phys. World 15(4), 64 (2002)

    Article  Google Scholar 

  66. W.H. Lehn, Isaac Newton and the astronomical refraction. Appl. Opt. 47(34), H95–H105 (2008)

    Article  Google Scholar 

  67. M. Nauenberg, Newton’s theory of the atmospheric refraction of light. Am. J. Phys. 85(12), 921–925 (2017)

    Article  ADS  Google Scholar 

  68. C. Huygens, Chapter III: on refraction, in Treatise on Light (Okitoks Press, 2012), pp. 25–36

  69. M. Born and E. Wolf, Historical introduction, in Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge Univ. Press, 1999), pp. XXV

  70. J. Lequeux, Chapter 3: The nature of light, in François Arago: A 19th Century French Humanist and Pioneer in Astrophysics (Springer International Publishing Switzerland, 2016), pp. 57–87

  71. T. Young, Lecture XXXV: On the theory of optics, in A Course of Lectures on Natural Philosophy and the Mechanical Arts (London, 1807) pp. 408–419. https://archive.org/details/lecturescourseof01younrich/page/408/mode/2up

  72. M.W. Davidson, Pioneers in optics: Dominique–François–Jean Arago and Augustin–Jean fresnel. Microsc. Today 18, 46–47 (2010)

    Article  Google Scholar 

  73. N. Gack, C. Reitz, J.L. Hemmerich, M. Koenne, R. Bennett, J. Fiedler, H. Gleiter, S.Y. Buhmann, H. Hahn, T. Reisinger, Signature of short-range Van der Waals forces observed in Poisson spot diffraction with indium atoms. Phys. Rev. Lett. 125(5), 050401 (2020)

    Article  ADS  Google Scholar 

  74. C. Finot, H. Rigneault, Arago spot formation in the time domain. J. Opt. 21(10), 105504 (2019)

    Article  ADS  Google Scholar 

  75. J. Lequeux, Chapter 4: The velocity of light, in François Arago: A 19th Century French Humanist and Pioneer in Astrophysics (Springer International Publishing Switzerland, 2016), pp. 89–118

  76. H.T.H. Piaggio, Hamilton and geometrical optics. Nature 142(3586), 135–136 (1938)

    Article  ADS  Google Scholar 

  77. H. Ohno, Symplectic ray tracing based on Hamiltonian optics in gradient-index media. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 37(3), 411–416 (2020)

    Article  ADS  Google Scholar 

  78. A.V. Gitin, The Legendre transformations in Hamiltonian optics. J. Eur. Opt. Soc.-Rapid Publ. 5, 10022 (2010)

    Article  Google Scholar 

  79. R. Loudon, C. Baxter, Contributions of John Henry Poynting to the understanding of radiation pressure. Proc. R. Soc. A Math. Phys. Eng. Sci. 468(2143), 1825–1838 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  80. A. Einstein, On a heuristic point of view about the creation and conversion of light, translated by Wikisource (1905)

  81. A. Pais, The photon, in Subtle is the Lord: The Science and the Life of Albert Einstein (U.S.A New York Oxford University Press, 1982), pp. 408

  82. A. Einstein, J. Laub, Über die im elektromagnetischen Felde auf ruhende Körper ausgeübten ponderomotorischen Kräfte. Ann. Phys. 331(8), 541–550 (1908)

    Article  MATH  Google Scholar 

  83. M. Mansuripur, Force, torque, linear momentum, and angular momentum in classical electrodynamics. Appl. Phys. A 123(10), 653 (2017)

    Article  ADS  Google Scholar 

  84. C. Kalman, A role for experiment in using the law of inertia to explain the nature of science: a comment on Lopes Celho. Sci. Educ. 18(1), 25–31 (2009)

    Article  Google Scholar 

  85. J.T. Katsikadelis, Derivation of Newton’s law of motion from Kepler’s laws of planetary motion. Arch. Appl. Mech. 88(1–2), 27–38 (2018)

    Article  ADS  Google Scholar 

  86. J.T. Katsikadelis, Derivation of Newton’s law of motion using Galileo’s experimental data. Acta Mech. 226(9), 3195–3204 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  87. S. Aoki, The moon-test in Newton’s principia: accuracy of inverse-square law of universal gravitation. Arch. Hist. Exact Sci. 44(2), 147–190 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. A. Einstein, The foundation of the general theory of relativity. Ann. Phys. 49, 769 (1916)

    Article  Google Scholar 

  89. G. Feng, J. Huang, Z. Wu, Overcoming geometric issues in the multipath propagation of electromagnetic waves using ray tracing and spherical ground surface theory. Optik 181, 326–337 (2019)

    Article  ADS  Google Scholar 

  90. G. Feng, J. Huang, A space–time ruler-based explanation of relativistic effects. Optik 207, 163867 (2020)

    Article  ADS  Google Scholar 

  91. G. Feng, J. Huang, An optical perspective on the theory of relativity–IV: space–time invariant. Optik 224, 165697 (2020)

    Article  ADS  Google Scholar 

  92. G. Feng, J. Huang, An optical perspective on the theory of relativity-I: basic concepts and equivalence principle. Optik 224, 165686 (2020)

    Article  ADS  Google Scholar 

  93. G. Feng, J. Huang, An optical perspective on the theory of relativity-II: gravitational deflection of light and Shapiro time delay. Optik 224, 165685 (2020)

    Article  ADS  Google Scholar 

  94. R.W. Brehme, A geometric representation of Galilean and Lorentz transformations. Am. J. Phys. 30(7), 489–496 (1962)

    Article  ADS  MATH  Google Scholar 

  95. R. de Abreu, V. Guerra, The principle of relativity and the indeterminacy of special relativity. Eur. J. Phys. 29(1), 33–52 (2008)

    Article  MathSciNet  Google Scholar 

  96. O. Lodge, The geometrisation of physics, and its supposed basis on the Michelson–Morley experiment. Nature 106(2677), 795–800 (1921)

    Article  ADS  MATH  Google Scholar 

  97. A. Einstein, On the electrodynamics of moving bodies. Ann. Phys. 17, 891 (1905)

    Article  MATH  Google Scholar 

  98. G. Feng, J. Huang, A geometric optics method for calculating light propagation in gravitational fields. Optik 194, 163082 (2019)

    Article  ADS  Google Scholar 

  99. G. Feng, J. Huang, An optical perspective on the theory of relativity-V: perihelion precession. Optik 224, 165683 (2020)

    Article  ADS  Google Scholar 

  100. F.W. Dyson, A.S. Eddington, C. Davidson, A determination of the deflection of light by the sun’s gravitational field, from observations made at the total eclipse of May 29, 1919. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 220(571–581), 291–333 (1920)

    ADS  Google Scholar 

  101. A.A. Mikhailov, The deflection of light by the gravitational field of the sun. Mon. Not. R. Astron. Soc. 119, 593–608 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  102. J.W. Arthur, The fundamentals of electromagnetic theory revisited. IEEE Antennas Propag. Mag. 50(1), 19–65 (2008)

    Article  ADS  Google Scholar 

  103. P.J. Mohr, D.B. Newell, B.N. Taylor, CODATA recommended values of the fundamental physical constants: 2014. Rev. Mod. Phys. 88, 035009 (2016)

    Article  ADS  Google Scholar 

  104. D. R. Williams, Sun fact sheet, NASA Goddard Space Flight Center, Archived from the original on 15 July 2010

  105. I.I. Shapiro, Fourth test of general relativity. Phys. Rev. Lett. 13(26), 789 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  106. I.I. Shapiro, G.H. Pettengill, M.E. Ash, M.L. Stone, W.B. Smith, R.P. Ingalls, R.A. Brockelman, Fourth test of general relativity: preliminary results. Phys. Rev. Lett. 20, 1265 (1968)

    Article  ADS  Google Scholar 

  107. I.I. Shapiro, M.E. Ash, R.P. Ingalls, W.B. Smith, D.B. Campbell, R.B. Dyce, R.F. Jurgens, G.H. Pettengill, Fourth test of general relativity: new Radar result. Phys. Rev. Lett. 26, 1132 (1971)

    Article  ADS  Google Scholar 

  108. R.D. Reasenberg, I.I. Shapiro, P.E. MacNeil, R.B. Goldstein, Viking relativity experiment—verification of signal retardation by solar gravity. Astrophys. J. 234, L219 (1979)

    Article  ADS  Google Scholar 

  109. G. Feng, J. Huang, An optical perspective on the theory of relativity-III: gravitational Redshift. Optik 224, 165684 (2020)

    Article  ADS  Google Scholar 

  110. T. Do, A. Hees, A. Ghez et al., Relativistic redshift of the star S0–2 orbiting the galactic center supermassive black hole. Science 365(6454), 664 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to EditSprings (https://www.editsprings.com/) for the expert linguistic services provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxu Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, G., Huang, J. A heuristic resolution of the Abraham–Minkowski controversy. Eur. Phys. J. Plus 136, 520 (2021). https://doi.org/10.1140/epjp/s13360-021-01523-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01523-8

Navigation