Skip to main content
Log in

Force, torque, linear momentum, and angular momentum in classical electrodynamics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The classical theory of electrodynamics is built upon Maxwell’s equations and the concepts of electromagnetic (EM) field, force, energy, and momentum, which are intimately tied together by Poynting’s theorem and by the Lorentz force law. Whereas Maxwell’s equations relate the fields to their material sources, Poynting’s theorem governs the flow of EM energy and its exchange between fields and material media, while the Lorentz law regulates the back-and-forth transfer of momentum between the media and the fields. An alternative force law, first proposed by Einstein and Laub, exists that is consistent with Maxwell’s equations and complies with the conservation laws as well as with the requirements of special relativity. While the Lorentz law requires the introduction of hidden energy and hidden momentum in situations where an electric field acts on a magnetized medium, the Einstein–Laub (E–L) formulation of EM force and torque does not invoke hidden entities under such circumstances. Moreover, total force/torque exerted by EM fields on any given object turns out to be independent of whether the density of force/torque is evaluated using the law of Lorentz or that of Einstein and Laub. Hidden entities aside, the two formulations differ only in their predicted force and torque distributions inside matter. Such differences in distribution are occasionally measurable, and could serve as a guide in deciding which formulation, if either, corresponds to physical reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The Helmholtz force-density associated with the action of the E-field on a dielectric material of mass density ρ and relative permittivity ε is often written as follows [41]:

    $$ \varvec{F}_{\text{H}} (\varvec{r},t) = - {\mathbf{\raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} }}\varepsilon_{\text{o}} ({\mathbf{\nabla }}\varepsilon )(\varvec{E} \cdot \varvec{E}) + {\mathbf{\raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} }}\varepsilon_{\text{o}} {\mathbf{\nabla }}\left( {\rho \frac{\partial \varepsilon }{\partial \rho }\varvec{E} \cdot \varvec{E}} \right). $$

    The first term on the right-hand side of the above equation arises naturally from the stress tensors of Abraham and Minkowski, as discussed in Sect. 8. The second term, which is associated with electrostriction, is derived phenomenologically, using arguments from the theories of elasticity and thermodynamics [40, 75].

  2. In the literature [41, 45, 47, 55], Abraham’s stress tensor is usually written as a symmetrized version of Minkowski’s tensor, that is,

    $$ {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {\mathcal{T}} }}_{A} (\varvec{r},t) = \raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} \left[ {(\varvec{D} \cdot \varvec{E} + \varvec{B} \cdot \varvec{H}){\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} }} - (\varvec{DE} + \varvec{ED}) - (\varvec{BH} + \varvec{HB})} \right]. $$

    Abraham’s concerns, as well of those of his followers, were primarily with linear, isotropic media, namely, media for which \( \varvec{D} = \varepsilon_{\text{o}} \varepsilon \varvec{E} \) and \( \varvec{B} = \mu_{\text{o}} \mu \varvec{H} \). In such cases, since the stress tensor of Minkowski, given by Eq. (28), is already symmetric, the above act of symmetrization does not modify the tensor. In Abraham’s own paper [43], the stress tensor is written explicitly only twice, in Eqs. (5a) and (56), and in both instances it is identical to Minkowski’s (asymmetric) tensor. At several points in his papers [43, 44], Abraham mentions the symmetry of his tensor, but it appears that he has the special case of linear, isotropic media in mind. The special symmetry that Abraham introduced into Minkowski’s theory is, of course, that between the energy flow-rate, \( \varvec{E} \times \varvec{H} \), and the electromagnetic momentum density, \( \varvec{E} \times \varvec{H}/c^{2} \), which reside, respectively, in the fourth column and the fourth row of the stress-energy tensor. Be it as it may, in Eq. (28) we have chosen the asymmetric version of Abraham’s (3 × 3) stress tensor, as it simplifies the subsequent discussion. In any event, this does not affect the main results and the conclusions reached in Sect. 8, since the media chosen for analysis in that section are linear and isotropic.

References

  1. W. Shockley, R.P. James, Try simplest cases discovery of hidden momentum forces on magnetic currents. Phys. Rev. Lett. 18, 876–879 (1967)

    Article  ADS  Google Scholar 

  2. W. Shockley, Hidden linear momentum related to the α·E term for a Dirac-electron wave packet in an electric field. Phys. Rev. Lett. 20, 343–346 (1968)

    Article  ADS  Google Scholar 

  3. W. Shockley, A ‘try simplest cases’ resolution of the Abraham–Minkowski controversy on electromagnetic momentum in matter. Proc. Natl. Acad. Sci. 60, 807 (1968)

    Article  ADS  Google Scholar 

  4. S. Coleman, J.H. Van Vleck, Origin of ‘hidden momentum forces’ on magnets. Phys. Rev. 171, 1370–1375 (1968)

    Article  ADS  Google Scholar 

  5. H.A. Haus, P. Penfield, Force on a current loop. Phys. Lett. 26A, 412–413 (1968)

    Article  ADS  Google Scholar 

  6. O. Costa de Beauregard, ‘Hidden momentum’ in magnets and interaction energy. Phys. Lett. 28A, 365 (1968)

    Article  ADS  Google Scholar 

  7. W.H. Furry, Examples of momentum distribution in the electromagnetic field and in matter. Am. J. Phys. 37, 621–636 (1969)

    Article  ADS  Google Scholar 

  8. D. Bedford, P. Krumm, On the origin of magnetic dynamics. Am. J. Phys. 54, 1036 (1986)

    Article  ADS  Google Scholar 

  9. T.H. Boyer, Proposed Aharonov–Casher effect: another example of an Aharonov–Bohm effect arising from a classical lag. Phys. Rev. A 36, 5083–5086 (1987)

    Article  ADS  Google Scholar 

  10. Y. Aharonov, P. Pearle, L. Vaidman, Comment on ‘Proposed Aharonov–Casher effect: another example of an Aharonov–Bohm effect arising from a classical lag’. Phys. Rev. A 37, 4052–4055 (1988)

    Article  ADS  Google Scholar 

  11. V. Namias, Electrodynamics of moving dipoles: the case of the missing torque. Am. J. Phys. 57, 171–177 (1989)

    Article  ADS  Google Scholar 

  12. L. Vaidman, Torque and force on a magnetic dipole. Am. J. Phys. 58, 978–983 (1990)

    Article  ADS  Google Scholar 

  13. D.J. Griffiths, Dipoles at rest. Am. J. Phys. 60, 979–987 (1992)

    Article  ADS  Google Scholar 

  14. E. Comay, Exposing hidden momentum. Am. J. Phys. 64, 1028–1034 (1996)

    Article  ADS  Google Scholar 

  15. V. Hnizdo, Hidden momentum of a relativistic fluid carrying current in an external electric field. Am. J. Phys. 65, 92–94 (1997)

    Article  ADS  Google Scholar 

  16. T.H. Boyer, Concerning ‘hidden momentum’. Am. J. Phys. 76, 190–191 (2008)

    Article  ADS  Google Scholar 

  17. D. Babson, S.P. Reynolds, R. Bjorkquist, D.J. Griffiths, Hidden momentum, field momentum, and electromagnetic impulse. Am. J. Phys. 77, 826–833 (2009)

    Article  ADS  Google Scholar 

  18. D.J. Griffiths, Resource letter EM-1: electromagnetic momentum. Am. J. Phys. 80, 7–18 (2012)

    Article  ADS  Google Scholar 

  19. D.J. Griffiths, V. Hnizdo, Mansuripur’s paradox. Am. J. Phys. 81, 570–574 (2013)

    Article  ADS  Google Scholar 

  20. K.T. McDonald, “Mansuripur’s paradox”, posted to http://www.physics.princeton.edu/~mcdonald/examples/mansuripur.pdf

  21. A. Einstein, J. Laub, “Über die im elektromagnetischen Felde auf ruhende Körper ausgeübten pondero-motorischen Kräfte,” Annalen der Physik 331, 541–550 (1908). The English translation of this paper appears in The Collected Papers of Albert Einstein, Vol. 2 (Princeton University Press, Princeton, NJ, 1989)

  22. M. Mansuripur, Energy and linear and angular momenta in simple electromagnetic systems. Optical Trapping and Optical Micromanipulation XII, edited by K. Dholakia and G.C. Spalding, Proceedings of SPIE Vol. 9548, 95480K1–24 (2015)

  23. The Collected Papers of Albert Einstein, Volume 8, “The Berlin Years: Correspondence, 1914–1918”, Item 565, To Walter Dällenbach, after 15 June 1918 (Princeton University Press, Princeton, 1998)

    Google Scholar 

  24. M. Mansuripur, Resolution of the Abraham–Minkowski controversy. Opt. Commun. 283, 1997–2005 (2010)

    Article  ADS  Google Scholar 

  25. M. Mansuripur, On the foundational equations of the classical theory of electrodynamics. Resonance 18, 130–155 (2013)

    Article  Google Scholar 

  26. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)

    MATH  Google Scholar 

  27. L. Landau, E. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, New York, 1960)

    MATH  Google Scholar 

  28. M. Mansuripur, Field, force, energy and momentum in classical electrodynamics, revised edition (Bentham e-books, Sharjah, United Arab Emirates, 2017)

    Book  Google Scholar 

  29. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Reading, Massachusetts, 1964)

    MATH  Google Scholar 

  30. D.J. Griffiths, Introduction to Electrodynamics, 2nd edn. (Prentice Hall, New Jersey, 1989)

    Google Scholar 

  31. P.L. Saldanha, Division of the energy and of the momentum of electromagnetic waves in linear media into electromagnetic and material parts. Opt. Commun. 284, 2653–2657 (2011)

    Article  ADS  Google Scholar 

  32. P.J. Grundy, R.S. Tebble, Lorentz Electron Microscopy. Adv. Phys. 17, 153–242 (1968)

    Article  ADS  Google Scholar 

  33. M. Mansuripur, Computation of electron-diffraction patterns in Lorentz electron microscopy of thin magnetic films. J. Appl. Phys. 69, 2455 (1991)

    Article  ADS  Google Scholar 

  34. M. Mansuripur, The Physical Principles of Magneto-Optical Recording, Section 18.3 (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  35. L. Alvarez, On the interior magnetic field in iron. Phys. Rev. 45, 225–226 (1934)

    Article  ADS  Google Scholar 

  36. F. Rasetti, Deflection of mesons in magnetized iron. Phys. Rev. 66, 1–5 (1944)

    Article  ADS  Google Scholar 

  37. N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald, N.P. Ong, Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010)

    Article  ADS  Google Scholar 

  38. M. Mansuripur, Electric and Magnetic Dipoles in the Lorentz and Einstein–Laub Formulations of Classical Electrodynamics. Quantum Sensing and Nanophotonic Devices XII, edited by M. Razeghi, E. Tournié, G.J. Brown, Proceedings of SPIE 9370, 93700U1–15 (2015)

  39. S.S. Hakim, J.B. Higham, An experimental determination of the excess pressure produced in a liquid dielectric by an electric field. Proc. R. Soc. 80, 190 (1962)

    Article  Google Scholar 

  40. P. Penfield, H.A. Haus, Electrodynamics of Moving Media (MIT Press, Cambridge, 1967)

    Google Scholar 

  41. I. Brevik, Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor. Phys. Rep. (Rev. Sect. Phys. Lett.) 52, 133–201 (1979)

    ADS  Google Scholar 

  42. H. Minkowski, The fundamental equations for electromagnetic processes in moving bodies”, Nachr. Ges. Wiss. Gottingen, Mathematisch-Physikalische Klasse, pp 53–111 (1908). Reprinted in Math. Annalen 68, 472 (1910)

    Article  Google Scholar 

  43. M. Abraham, On the electrodynamics of moving bodies. Rendiconti del Circolo Matematico di Palermo 28, 1–28 (1909)

    Article  Google Scholar 

  44. M. Abraham, On the electrodynamics of Minkowski. Rendiconti del Circolo Matematico di Palermo 30, 33–46 (1910)

    Article  Google Scholar 

  45. B.A. Kemp, Resolution of the Abraham–Minkowski debate: implications for the electromagnetic wave theory of light in matter. J. Appl. Phys. 109, 111101 (2011)

    Article  ADS  Google Scholar 

  46. M. Mansuripur, A.R. Zakharian, E.M. Wright, Electromagnetic-force distribution inside matter. Phys. Rev. A 88(023826), 1–13 (2013)

    Google Scholar 

  47. W. Frias, A.I. Smolyakov, Electromagnetic forces and internal stresses in dielectric media. Phys. Rev. E 85, 046606 (2012)

    Article  ADS  Google Scholar 

  48. M. Mansuripur, Electromagnetic force and torque in Lorentz and Einstein–Laub formulations. Optical Trapping and Optical Micromanipulation XI. In: K. Dholakia, G.C. Spalding, eds. Proceedings of SPIE 9164, 91640B1–16 (2014). doi:10.1117/12.2060554

  49. D.J. Griffiths, V. Hnizdo, What’s the use of bound charge? Available online at arXiv:1506.02590v2 (2015)

  50. R.M. Power, J.P. Reid, Probing the micro-rheological properties of aerosol particles using optical tweezers. Rep. Prog. Phys. 77, 074601 (2014)

    Article  ADS  Google Scholar 

  51. A. Ashkin, J. Dziedzic, Radiation pressure on a free liquid surface. Phys. Rev. Lett. 30, 139–142 (1973)

    Article  ADS  Google Scholar 

  52. R. Loudon, Theory of the forces exerted by Laguerre–Gaussian light beams on dielectrics. Phys. Rev. A 68, 013804 (2003)

    Article  ADS  Google Scholar 

  53. R. Loudon, Radiation pressure and momentum in dielectrics. Fortschr. Phys. 52, 1134–1140 (2004)

    Article  Google Scholar 

  54. M. Mansuripur, Radiation pressure and the distribution of electromagnetic force in dielectric media. Proc. SPIE 5930, 59300O-1-7 (2005). (arXiv:1207.2535v1)

    Google Scholar 

  55. P.W. Milonni, R.W. Boyd, Momentum of light in a dielectric medium. Adv. Opt. Photon. 2, 519–553 (2010)

    Article  Google Scholar 

  56. D.H. Bradshaw, Z. Shi, R.W. Boyd, P.W. Milonni, Electromagnetic momenta and forces in dispersive dielectric media. Opt. Commun. 283, 650 (2010)

    Article  ADS  Google Scholar 

  57. G.L. Rikken, B.A. van Tiggelen, Observation of the intrinsic Abraham force in time-varying magnetic and dielectric fields. Phys. Rev. Lett. 108, 230402 (2012)

    Article  ADS  Google Scholar 

  58. M. Mansuripur, A.R. Zakharian, Whence the Minkowski momentum? Opt. Commun. 283, 3557–3563 (2010)

    Article  ADS  Google Scholar 

  59. K.J. Webb, Dependence of the radiation pressure on the background refractive index. Phys. Rev. Lett. 111, 043602 (2013)

    Article  ADS  Google Scholar 

  60. N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965)

    MATH  Google Scholar 

  61. Y.R. Shen, Electrostriction, optical Kerr effect and self-focusing of laser beams. Phys. Lett. 20, 378 (1966)

    Article  ADS  Google Scholar 

  62. N.M. Kroll, P.L. Kelley, Temporal and spatial gain in stimulated light scattering. Phys. Rev. A 4, 763–776 (1971)

    Article  ADS  Google Scholar 

  63. E.L. Kerr, Filamentary tracks formed in transparent optical glass by laser beam self-focusing. II. Theoretical analysis. Phys. Rev. A 4, 1195–1218 (1971)

    Article  ADS  Google Scholar 

  64. R.W. Boyd, Nonlinear Optics, Chaps 8 and 9 (Academic, San Diego, 2008)

    Google Scholar 

  65. R.Y. Chiao, C.H. Townes, B.P. Stoicheff, Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys. Rev. Lett. 12, 592–595 (1964)

    Article  ADS  Google Scholar 

  66. E.P. Ippen, R.H. Stolen, Stimulated Brillouin scattering in optical fibers. Appl. Phys. Lett. 21, 539 (1972)

    Article  ADS  Google Scholar 

  67. F.N.H. Robinson, Electromagnetic stress and momentum in matter. Phys. Rep. 16, 313–354 (1975)

    Article  ADS  Google Scholar 

  68. M. Mansuripur, Radiation pressure on submerged mirrors: implications for the momentum of light in dielectric media. Opt. Express 15, 2677–2682 (2007)

    Article  ADS  Google Scholar 

  69. R.V. Jones, J.C.S. Richards, Proc. R. Soc. A 221, 480 (1954)

    Article  ADS  Google Scholar 

  70. R.V. Jones, Radiation pressure of light in a dispersive medium. Proc. R. Soc. Lond. Ser. A. 360, 365–371 (1977)

    Article  ADS  Google Scholar 

  71. R.V. Jones, B. Leslie, The measurement of optical radiation pressure in dispersive media. Proc. R. Soc. Lond. Ser. A 360, 347–363 (1978)

    Article  ADS  Google Scholar 

  72. M. Mansuripur, Deducing radiation pressure on a submerged mirror from the Doppler shift. Phys. Rev. A 85(023807), 1–5 (2012)

    Google Scholar 

  73. M. Mansuripur, A.R. Zakharian, Radiation pressure on a submerged absorptive partial reflector deduced from the Doppler shift. Phys. Rev. A 86(013841), 1–9 (2012)

    Google Scholar 

  74. M. Mansuripur, A.R. Zakharian, Radiation pressure and photon momentum in negative-index media. Proc. SPIE 8455, 8455111–8455114 (2012)

    ADS  Google Scholar 

  75. H.M. Lai, W.M. Suen, K. Young, Microscopic derivation of the Helmholtz force density. Phys. Rev. Lett. 47, 177–179 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masud Mansuripur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansuripur, M. Force, torque, linear momentum, and angular momentum in classical electrodynamics . Appl. Phys. A 123, 653 (2017). https://doi.org/10.1007/s00339-017-1253-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1253-2

Navigation