Skip to main content
Log in

Study on subsurface damage of wafer silicon containing through silicon via in thinning

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Molecular Dynamics (MD) simulations are carried out to study the thinning mechanism of silicon wafer containing through silicon via (TSV) at different loading conditions. The nano-metric grinding process is explained by lattice slip and distortion induced by tool extrusion. When the grinding depth is relatively low, amorphous silicon will appear on the surface of the silicon. The nano-twin defects appear on the subsurface of the workpiece as the grinding depth reaches 1.5nm. We compared the depth of the defect at the Si-SiO2 interface and inside the silicon. The results show that the nano-twins extend to the interface leading to a deeper damage. Between 40 and 100m/s, increasing the grinding speed can slightly reduce the depth of interface damage, while the defects inside the silicon are mainly affected by the grinding depth. Moreover, both normal and tangential force decrease with the increase of speed from 40 to 100m/s. The friction coefficient calculation results show that the larger the grinding depth, the larger the friction coefficient. Higher speeds reduce the friction coefficient of the diamond abrasive particles and the workpiece surface over the speed range from 40 to 100m/s. At last, the surface contact stress is calculated based on the actual contact surface. With the depth of 1.0nm, the contact stress is the largest, i.e. 11.99GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gordon E. Moore, IEEE Solid-State Circ. Soc. Newslett. 11, 33 (2006)

    Article  Google Scholar 

  2. H.L. John, Microelectron. Int. 28, 8 (2011)

    Google Scholar 

  3. R. Gassilloud, C. Ballif, P. Gasser, G. Buerki, J. Michler, Phys. Status Solidi (a) 202, 2858 (2005)

    Article  ADS  Google Scholar 

  4. R. Chen, J. Luo, D. Guo, X. Lu, J. Appl. Phys. 104, 104907 (2008)

    Article  ADS  Google Scholar 

  5. X. Han, Y. Hu, S. Yu, Appl. Phys. A 95, 899 (2009)

    Article  ADS  Google Scholar 

  6. Z. Yang, Z. Lu, Y. Zhao, J. Appl. Phys. 106, 023537 (2009)

    Article  ADS  Google Scholar 

  7. M.I. Baskes, M. Nastasi, J.G. Swadener, Phys. Rev. Lett. 89, 085503 (2002)

    Article  ADS  Google Scholar 

  8. W.C. Nixon, J. R. Microsc. Soc. 83, 213 (1964)

    Article  Google Scholar 

  9. D.B. Williams, C.B. Carter, The Transmission Electron Microscope, Transmission Electron Microscopy: A Textbook for Materials Science (Springer US, Boston, MA, 1996) pp. 3--17

  10. W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, J. Chem. Phys. 76, 637 (1982)

    Article  ADS  Google Scholar 

  11. W.G. Hoover, B.H. Failor, B. Moran, A.J.C. Ladd, D.J. Evans, Phys. Rev. A 28, 1016 (1983)

    Article  ADS  Google Scholar 

  12. D. Mulliah, S.D. Kenny, Roger Smith, C.F. Sanz-Navarro, Nanotechnology 15, 243 (2004)

    Article  ADS  Google Scholar 

  13. R. Komanduri, N. Ch And Rasekaran, L.M. Raff, Philos. Mag. B 81, 1989 (2001)

    Article  ADS  Google Scholar 

  14. I. Zarudi, L.C. Zhang, W.C.D. Cheong, T.X. Yu, Acta Mater. 53, 4795 (2005)

    Article  Google Scholar 

  15. T. Yokosuka, H. Kurokawa, S. Takami, M. Kubo, A. Miyamoto, A. Imamura, Jpn. J. Appl. Phys. 41, 2410 (2002)

    Article  ADS  Google Scholar 

  16. R. Chen, R. Jiang, H. Lei, M. Liang, Appl. Surf. Sci. 264, 148 (2013)

    Article  ADS  Google Scholar 

  17. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  18. I. Zarudi, W.C.D. Cheong, J. Zou, L.C. Zhang, Nanotechnology 15, 104 (2004)

    Article  ADS  Google Scholar 

  19. J. Tersoff, Phys. Rev. B 39, 5566 (1989)

    Article  ADS  Google Scholar 

  20. N.M. Putintsev, D.N. Putintsev, Dokl. Phys. Chem. 399, 278 (2004)

    Article  Google Scholar 

  21. Y.S. Kim, K.H. Na, S.O. Choi, S.H. Yang, J. Mater. Process Tech. 155-156, 1847 (2004)

    Article  Google Scholar 

  22. S. Alexander, Model Simul. Mater. Sci. 18, 015012 (2010)

    Article  Google Scholar 

  23. E. Maras, O. Trushin, A. Stukowski, T. Ala-Nissila, H. Jónsson, Comput. Phys. Commun. 205, 13 (2016)

    Article  ADS  Google Scholar 

  24. J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91, 4950 (1987)

    Article  Google Scholar 

  25. B. Wang, Z. Zhang, K. Chang, J. Cui, A. Rosenkranz, J. Yu, C. Lin, G. Chen, K. Zang, J. Luo, N. Jiang, D. Guo, Nano Lett. 18, 4611 (2018)

    Article  ADS  Google Scholar 

  26. R.W.G. Wyckoff, Crystal Structures, Vol. 1, second edition (Interscience Publishers, New York, 1963) pp. 7--83

  27. T. Fang, C. Weng, J. Chang, Mater. Sci. Eng.: A 357, 7 (2003)

    Article  Google Scholar 

  28. W.C.D. Cheong, L.C. Zhang, Nanotechnology 11, 173 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulong Zhu.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Wang, M., Zhu, F. et al. Study on subsurface damage of wafer silicon containing through silicon via in thinning. Eur. Phys. J. Plus 134, 234 (2019). https://doi.org/10.1140/epjp/i2019-12591-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12591-4

Navigation