Skip to main content
Log in

Investigation of material removal mechanism of silicon wafer in the chemical mechanical polishing process using molecular dynamics simulation method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Chemical mechanical polishing (CMP) technology, being the mainstream technique of acquiring global planarization and nanometer level surface, has already become an attractive research item. In the case of CMP process, the indentation depth lies in the range of nanometer or sub-nanometer, huge hydrostatic pressure induced in the local deformation area which makes the material removal and surface generation process different from traditional manufacturing process. In order to investigate the physical essence of CMP technique, the authors carry out molecular dynamics (MD) analysis of chemical mechanical polishing of a silicon wafer. The simulation result shows that huge hydrostatic pressure is induced in the local area and leads to the silicon atom transform from the classical diamond structure (α silicon) to metal structure (β silicon). This important factor results in the ductile fracture of silicon and then in the acquisition of a super-smooth surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.W. Preston, The theory and design of plate glass polishing machine, J. Soc. Glass. Tech. 11(44), 214–256 (1927)

    Google Scholar 

  2. V.H. Nguyen, F.G. Shi, Modeling of the removal rate in chemical mechanical polishing, Proc. SPIE Int. Soc. Opt. Eng. 4181, 161–167 (2000)

    ADS  Google Scholar 

  3. G. Fu, A. Chandra, S. Guha , A plasticity-based model of material removal in chemical-mechanical polishing (CMP), IEEE Trans. Semicond. Manuf. 14(4), 406–417 (2001)

    Article  Google Scholar 

  4. J.F. Luo, D.A. Dornfeld, Effects of abrasive size distribution in chemical mechanical planarization: modeling and verification, IEEE Trans. Semicond. Manuf. 16(3), 469–476 (2003)

    Article  Google Scholar 

  5. S.R. Runnels, I. Kim, J. Schleuter , Modeling tool for chemical-mechanical polishing design and evaluation, IEEE Trans. Semicond. Manuf. 11(3), 501–510 (1998)

    Article  Google Scholar 

  6. D.A. Litton, S.H. Garofalini, Modeling of hydrophilic wafer bonding by molecular dynamics simulations, J. Appl. Phys. 89(11), 6013–6023 (2001)

    Article  ADS  Google Scholar 

  7. P.N. Blake, R.O. Scattergood, Ductile—regime machining of germanium and silicon, J. Am. Ceram. Soc. 73(4), 949–957 (1990)

    Article  Google Scholar 

  8. J. Donohue, The Structures of Elements (Wiley, New York, 1974), pp. 262–266

    Google Scholar 

  9. D.R. Clark, M.C. Kroll, P.D. Kirchner , Amorphization and conductivity of silicon and germanium during indentation, Phys. Rev. Lett. 60, 2156–2160 (1988)

    Article  ADS  Google Scholar 

  10. J.C. Morris, D.L. Callahan, J. Qulik , Origins of ductile regime in single point diamond turning of semiconductors, J. Am. Ceram. Soc. 78(8), 2015–2020 (1995)

    Article  Google Scholar 

  11. K.D. Studip, W. Martin, S. Maddury , Pressure-induced amorphization and an amorphous–amorphous transition in densified porous silicon, Nature 414(29), 528–530 (2001)

    Google Scholar 

  12. D.A. Lucca, T.R. Oquin, Orthogonal ultraprecision machining of single crystal germanium, in ASPE Annual Meeting Proceedings, (1992), pp. 21–30

  13. J.A. Harrison, C.T. White, R.J. Colton , Nanoscale investigation of indentation, adhesion and fracture of diamond (111) surfaces, Surf. Sci. 271(1–2), 57–67 (1992)

    Article  ADS  Google Scholar 

  14. S. Shimada, N. Ikawa, T. Inamura , Brittle–ductile transition phenomena in microindentation and micromachining, CIRP Annu. 44(1), 523–526 (1995)

    Article  Google Scholar 

  15. R. Rentsch, I. Inasaki, Molecular dynamics simulation for abrasive processes, CIRP Annu. 43(1), 327–330 (1994)

    Article  Google Scholar 

  16. X.S. Han, S.Y. Yu, Molecular dynamics simulation of nanometric cutting process based on symplectic algorithm, Trans. CSME 41(4), 17–21 (2005)

    MathSciNet  Google Scholar 

  17. X.S. Han, S.Y. Yu, Investigation of tool geometry in nanometric cutting by molecular dynamics simulation, J. Mater. Process. Technol. 129(1–3), 105–108 (2002)

    Article  Google Scholar 

  18. X.S. Han, S.Y. Yu, Molecular dynamics simulation of nanometric grinding-the effect of crystal anisotropy on the quality of machined surface, Key Eng. Mater. 258–259, 361–365 (2004)

    Article  Google Scholar 

  19. J. Tersoff, Modeling solid state chemistry: interatomic potential for multicomponent systems, Phys. Rev. B 39, 5566–5570 (1989)

    Article  ADS  Google Scholar 

  20. P.M. Morse, Diatomic molecules according to the wave mechanics II vibrational levels, Phys. Rev. 34, 57–65 (1929)

    Article  ADS  Google Scholar 

  21. W.C.D. Cheong, L.C. Zhang, Molecular dynamics simulation of phase transformations in silicon monocrystals due to nanoindentation, Key Eng. Mater. 11, 173–180 (2000)

    ADS  Google Scholar 

  22. J.M. Haile, Molecular Dynamics Simulation-Element Method (Wiley-Interscience, New York, 1997), pp. 332–339

    Google Scholar 

  23. T.G. Bifano, T.A. Dow, R.O. Scattergood, Ductile regime grinding: a new technology for machining brittle materials, J. Eng. Ind. 113, 184–189 (1991)

    Article  Google Scholar 

  24. R.M. Tidwell, R.O. Scattergood, Diamond turning of brittle materials, PEC Ann. Rep. VIII, 153–159 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuesong Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, X., Hu, Y. & Yu, S. Investigation of material removal mechanism of silicon wafer in the chemical mechanical polishing process using molecular dynamics simulation method. Appl. Phys. A 95, 899–905 (2009). https://doi.org/10.1007/s00339-009-5097-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5097-2

PACS

Navigation