Skip to main content
Log in

The effect of tool geometry on subsurface damage and material removal in nanometric cutting single-crystal silicon by a molecular dynamics simulation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Molecular dynamics is employed to investigate the nanoscale cutting process of monocrystalline silicon with diamond tool. Materials removal behavior of workpiece through diamond cutting is studied. The effects of tool geometry on the deformation of material including rake angle, clearance angle and edge radius were carefully explored by analyzing the phase transformation, chips, hydrostatic stress, shear stress and workpiece deformation. The investigation shows that a positive rake angle tip, a larger clearance angle tip or a small edge radius tip would result in a smaller cutting force, a better subsurface and a larger chipping volume. Moreover, a bigger negative rake angle tip cutting has a larger hydrostatic stress and shear stress. However, a positive rake angle tip cutting has a larger average friction coefficient than a negative rake angle tip cutting, which means that negative rake angle tip cutting experiences a lower resistance rate. It is also found that a tip with positive rake angle or smaller edge radius will improve the smoothness of a ground surface. In addition, a bigger clearance angle tip cutting generates a lower temperature in workpiece.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L.B. Kong, C.F. Cheung, X.Q. Jiang et al., Characterization of surface generation of optical microstructures using a pattern and feature parametric analysis method. Precis. Eng. 34, 755–766 (2010)

    Article  Google Scholar 

  2. Y.Y. Ye, R. Biswas, J.R. Morris, A. Bastawros, A. Chandra, Molecular dynamics simulation of nanoscale machining of copper. Nanotechnology 14, 390 (2003)

    Article  ADS  Google Scholar 

  3. I. Zarudi, T. Nguyen, L.C. Zhang, Effect of temperature and stress on plastic deformation in monocrystalline silicon induced by scratching. Appl. Phys. Lett. 86, 011922 (2005)

    Article  ADS  Google Scholar 

  4. Y. Gogotsi, G. Zhou, S.S. Ku et al., Raman microspectroscopy analysis of pressure-induced metallization in scratching of silicon. Semicond. Sci. Technol. 16, 345 (2001)

    Article  ADS  Google Scholar 

  5. Y.Q. Wu, H. Huang, J. Zou et al., Nanoscratch-induced deformation of single crystal silicon. J. Vac. Sci. Technol. B 27, 1374–1377 (2009)

    Article  Google Scholar 

  6. R. Komanduri, N. Chandrasekaran, L.M. Raff, Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach. Wear 219, 84–97 (1998)

    Article  Google Scholar 

  7. J.A. Patten, W. Gao, Extreme negative rake angle technique for single point diamond nano-cutting of silicon. Precis. Eng. 25, 165–167 (2001)

    Article  Google Scholar 

  8. Q. Tang, F. Chen, MD simulation of phase transformations due to nanoscale cutting on silicon monocrystals with diamond tip. J. Phys. D Appl. Phys. 39, 3674 (2006)

    Article  ADS  Google Scholar 

  9. H. Tanaka, S. Shimada, L. Anthony, Requirements for ductile-mode machining based on deformation analysis of mono-crystalline silicon by molecular dynamics simulation. CIRP Ann. Manuf. Technol. 56, 53–56 (2007)

    Article  Google Scholar 

  10. M.B. Cai, X.P. Li, M. Rahman, Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation. J. Mater. Process. Technol. 192, 607–612 (2007)

    Article  Google Scholar 

  11. F.Z. Fang, H. Wu, W. Zhou et al., A study on mechanism of nano-cutting single crystal silicon. J. Mater. Process. Technol. 184, 407–410 (2007)

    Article  Google Scholar 

  12. J. Yan, H. Zhao, T. Kuriyagawa, Effects of tool edge radius on ductile machining of silicon: an investigation by FEM. Semicond. Sci. Technol. 24, 075018 (2009)

    Article  ADS  Google Scholar 

  13. H. Zhao, C. Shi, P. Zhang et al., Research on the effects of machining-induced subsurface damages on mono-crystalline silicon via molecular dynamics simulation. Appl. Surf. Sci. 259, 66–71 (2012)

    Article  ADS  Google Scholar 

  14. Y. Wang, J. Shi, C. Ji, A numerical study of residual stress induced in machined silicon surfaces by molecular dynamics simulation. Appl. Phys. A 115, 1263–1279 (2014)

    Article  ADS  Google Scholar 

  15. R. Gassilloud, C. Ballif, P. Gasser et al., Deformation mechanisms of silicon during nanoscratching. Phys. Status Solidi A 202, 2858–2869 (2005)

    Article  ADS  Google Scholar 

  16. B. Hendrickson, T.G. Kolda, Graph partitioning models for parallel computing. Parallel Comput. 26, 1519–1534 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  ADS  Google Scholar 

  18. C.S. Moura, L. Amaral, Molecular dynamics simulation of silicon nanostructures. Nucl. Instrum. Methods Phys. Res. Sect. B 228, 37–40 (2005)

    Article  ADS  Google Scholar 

  19. J. Tersoff, New empirical model for the structural properties of silicon. Phys. Rev. Lett. 56, 632 (1986)

    Article  ADS  Google Scholar 

  20. F.H. Stillinger, T.A. Weber, Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262 (1985)

    Article  ADS  Google Scholar 

  21. J. Tersoff, Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B 39, 5566 (1989)

    Article  ADS  Google Scholar 

  22. M.B. Cai, X.P. Li, M. Rahman, Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation. Int. J. Mach. Tools Manuf. 47, 75–80 (2007)

    Article  Google Scholar 

  23. L. Zhang, H. Zhao, Z. Ma et al., A study on phase transformation of monocrystalline silicon due to ultra-precision polishing by molecular dynamics simulation. AIP Adv. 2, 042116 (2012)

    Article  ADS  Google Scholar 

  24. L. Zhang, H. Zhao, Y. Yang et al., Evaluation of repeated single-point diamond turning on the deformation behavior of monocrystalline silicon via molecular dynamic simulations. Appl. Phys. A 116, 141–150 (2014)

    Article  ADS  Google Scholar 

  25. J.C. Rozzi, F.E. Pfefferkorn, F.P. Incropera et al., Transient, three-dimensional heat transfer model for the laser assisted machining of silicon nitride: I. Comparison of predictions with measured surface temperature histories. Int. J. Heat Mass Transf. 43, 1409–1424 (2000)

    Article  MATH  Google Scholar 

  26. J.J. Zhang, T. Sun, Y.D. Yan et al., Molecular dynamics simulation of subsurface deformed layers in AFM-based nanometric cutting process. Appl. Surf. Sci. 254, 4774–4779 (2008)

    Article  ADS  Google Scholar 

  27. P. Zhu, Y. Hu, T. Ma et al., Molecular dynamics study on friction due to ploughing and adhesion in nanometric scratching process. Tribol. Lett. 41, 41–46 (2011)

    Article  Google Scholar 

  28. Z. Tong, Y. Liang, X. Jiang et al., An atomistic investigation on the mechanism of machining nanostructures when using single tip and multi-tip diamond tools. Appl. Surf. Sci. 290, 458–465 (2014)

    Article  ADS  Google Scholar 

  29. S. Goel, X. Luo, A. Agrawal et al., Diamond machining of silicon: a review of advances in molecular dynamics simulation. Int. J. Mach. Tools Manuf. 88, 131–164 (2015)

    Article  Google Scholar 

  30. D.E. Kim, S.I. Oh, Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation. Nanotechnology 17, 2259 (2006)

    Article  ADS  Google Scholar 

  31. R.O. Piltz, J.R. Maclean, S.J. Clark et al., Structure and properties of silicon XII: a complex tetrahedrally bonded phase. Phys. Rev. B 52, 4072 (1995)

    Article  ADS  Google Scholar 

  32. J. Crain, G.J. Ackland, J.R. Maclean et al., Reversible pressure-induced structural transitions between metastable phases of silicon. Phys. Rev. B 50, 13043 (1994)

    Article  ADS  Google Scholar 

  33. H. Tanaka, S. Shimada, N. Ikawa, Brittle-ductile transition in monocrystalline silicon analysed by molecular dynamics simulation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 218, 583–590 (2004)

    Article  Google Scholar 

  34. S. Goel, X. Luo, R.L. Reuben, Wear mechanism of diamond tools against single crystal silicon in single point diamond turning process. Tribol. Int. 57, 272–281 (2013)

    Article  Google Scholar 

  35. T. Vodenitcharova, L.C. Zhang, A new constitutive model for the phase transformations in mono-crystalline silicon. Int. J. Solids Struct. 41, 5411–5424 (2004)

    Article  MATH  Google Scholar 

  36. M.B. Cai, X.P. Li, M. Rahman, Study of the mechanism of groove wear of the diamond tool in nanoscale ductile mode cutting of monocrystalline silicon. J. Manuf. Sci. Eng. 129, 281–286 (2007)

    Article  Google Scholar 

  37. B. Shiari, R.E. Miller, D.D. Klug, Multiscale simulation of material removal processes at the nanoscale. J. Mech. Phys. Solids 55, 2384–2405 (2007)

    Article  ADS  MATH  Google Scholar 

  38. L. Xiong, Y. Chen, Coarse-grained simulations of single-crystal silicon. Modell. Simul. Mater. Sci. Eng. 17, 035002 (2009)

    Article  ADS  Google Scholar 

  39. M.C. Gupta, A.L. Ruoff, Static compression of silicon in the [100] and in the [111] directions. J. Appl. Phys. 51, 1072–1075 (1980)

    Article  ADS  Google Scholar 

  40. D.R. Clarke, M.C. Kroll, P.D. Kirchner et al., Amorphization and conductivity of silicon and germanium induced by indentation. Phys. Rev. Lett. 60, 2156 (1988)

    Article  ADS  Google Scholar 

  41. P.A. Romero, G. Anciaux, A. Molinari et al., Insights into the thermo-mechanics of orthogonal nanometric machining. Comput. Mater. Sci. 72, 116–126 (2013)

    Article  Google Scholar 

  42. C. Shet, X. Deng, Finite element analysis of the orthogonal metal cutting process. J. Mater. Process. Technol. 105, 95–109 (2000)

    Article  Google Scholar 

  43. X.S. Han, B. Lin, S.Y. Yu et al., Investigation of tool geometry in nanometric cutting by molecular dynamics simulation. J. Mater. Process. Technol. 129, 105–108 (2002)

    Article  ADS  Google Scholar 

  44. G.L.W. Cross, Silicon nanoparticles: Isolation leads to change. Nat. Nanotechnol. 6, 467–468 (2011)

    Article  ADS  Google Scholar 

  45. H.W. Zhao, L. Zhang, P. Zhang et al., Influence of geometry in nanometric cutting single-crystal copper via MD simulation//advanced materials research. Adv Mater. Res. 421, 123–128 (2011)

    Article  Google Scholar 

  46. J. Li, Q. Fang, L. Zhang et al., Subsurface damage mechanism of high speed grinding process in single crystal silicon revealed by atomistic simulations. Appl. Surf. Sci. 324, 464–474 (2015)

    Article  ADS  Google Scholar 

  47. K. Mylvaganam, L.C. Zhang, Nanotwinning in monocrystalline silicon upon nanoscratching. Scr. Mater. 65, 214–216 (2011)

    Article  Google Scholar 

  48. X. Jing, S. Maiti, G. Subhash, A new analytical model for estimation of scratch-induced damage in brittle solids. J. Am. Ceram. Soc. 90, 885–892 (2007)

    Article  Google Scholar 

  49. H.G. Wobker, H.K. Tonshoff, High-efficiency grinding of structural ceramics. NIST Spec. Publ. 847, 171 (1993)

    Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate the support from the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2012ZX04003101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genyu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H., Chen, G., Fang, Q. et al. The effect of tool geometry on subsurface damage and material removal in nanometric cutting single-crystal silicon by a molecular dynamics simulation. Appl. Phys. A 122, 804 (2016). https://doi.org/10.1007/s00339-016-0319-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0319-x

Keywords

Navigation