Skip to main content
Log in

Scalar potentials with multi-scalar fields from quantum cosmology and supersymmetric quantum mechanics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The multi-scalar field cosmology of the anisotropic Bianchi type-I model is used in order to construct a family of potentials that are the best suited to model the inflation phenomenon. We employ the quantum potential approach to quantum mechanics due to Bohm in order to solve the corresponding Wheeler-DeWitt equation; which in turn enables us to restrict sensibly the aforementioned family of potentials. Supersymmetric Quantum Mechanics (SUSYQM) is also employed in order to constrain the superpotential function, at the same time the tools from SUSY Quantum Mechanics are used to test the family of potentials in order to infer which is the most convenient for the inflation epoch. For completeness solutions to the wave function of the universe are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R.L. Santos, P.H.R.S. Moraes, Fast-roll Solutions from two scalar field inflation (2015) arXiv:1504.07204 [gr-qc]

  2. D. Sáez-Gómez, Scalar-Tensor Theories and Current Cosmology, Problems of Modern Cosmology (2008) arXiv:0812.1980 [hep-th]

  3. G. Calcagni, Andrew R. Liddle, Phys. Rev. D 77, 023522 (2008) arXiv:0711.3360 [astro-ph]

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Capone, C. Rubano, P. Scudellaro, Europhys. Lett. 73, 149 (2006) arXiv:astro-ph/0607556

    Article  ADS  Google Scholar 

  5. Juan M. Ramírez, J. Socorro, Int. J. Theor. Phys. 52, 2867 (2013) arXiv:1206.5413 [gr-qc]

    Article  Google Scholar 

  6. E.J. Copeland, Liddle, D. Wands, Phys. Rev. D 57, 4686 (1998) arXiv:gr-qc/9711068

    Article  ADS  Google Scholar 

  7. E.J. Copeland, T. Barreiro, N.J. Nunes, Phys. Rev. D 61, 127301 (2000) arXiv:astro-ph/9910214

    Article  ADS  Google Scholar 

  8. R. Lazkoz, G. Len, I. Quiros, Phys. Lett. B 649, 103 (2007) arXiv:astro-ph/0701353

    Article  ADS  Google Scholar 

  9. M.C. Bento, O. Bertolami, N.C. Santos, Phys. Rev. D 65, 067301 (2001) arXiv:astro-ph/0106405

    Article  ADS  Google Scholar 

  10. A.A. Coley, R.J. van den Hoogen, Phys. Rev. D 62, 023517 (2000) arXiv:gr-qc/9911075

    Article  ADS  MathSciNet  Google Scholar 

  11. A.R. Liddle, R.J. Scherrer, Phys. Rev. D 59, 023509 (1998)

    Article  ADS  Google Scholar 

  12. P.G. Ferreira, M. Joyce, Phys. Rev. D 58, 023503 (1998)

    Article  ADS  Google Scholar 

  13. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006) arXiv:hep-th/0603057

    Article  ADS  Google Scholar 

  14. W. Guzmán, M. Sabido, J. Socorro, L. Arturo Ureña-López, Int. J. Mod. Phys. D 16, 641 (2007)

    Article  ADS  Google Scholar 

  15. J. Socorro, Marco D'oleire, Phys. Rev. D 82, 044008 (2010)

    Article  ADS  Google Scholar 

  16. D. Bohm, Phys. Rev. 85, 166 (1952)

    Article  ADS  Google Scholar 

  17. G.W. Gibbons, L.P. Grishchuk, Nucl. Phys. B 313, 736 (1989)

    Article  ADS  Google Scholar 

  18. Li Zhi Fang, Remo Ruffini (Editors), Quantum Cosmology, Advances Series in Astrophysics and Cosmology, Vol. 3 (World Scientific, Singapore, 1987)

  19. J. Hartle, S.W. Hawking, Phys. Rev. D 28, 2960 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  20. S.W. Hawking, Nucl. Phys. B 239, 257 (1984)

    Article  ADS  Google Scholar 

  21. H. Kodama, Prog. Theor. Phys. 80, 1024 (1988)

    Article  ADS  Google Scholar 

  22. H. Kodama, Phys. Rev D 42, 2548 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Ashtekar, Phys. Rev. D 36, 1587 (1989)

    Article  ADS  Google Scholar 

  24. V. Moncrief, M.P. Ryan, Phys. Rev. D 44, 2375 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  25. O. Obregón, J. Socorro, Int. J. Theor. Phys. 35, 1381 (1995)

    Article  Google Scholar 

  26. E. Witten, Nucl. Phys. B 188, 513 (1981)

    Article  ADS  Google Scholar 

  27. V.I. Tkach, J.J. Rosales, O. Obregón, Class. Quantum Grav. 13, 2349 (1996)

    Article  ADS  Google Scholar 

  28. E.E. Donets, M.N. Tentyukov, M.M. Tsulaia, Phys. Rev. D 59, 023515 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  29. R. Graham, Phys. Rev. D 48, 1602 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  30. P.D. D'Eath, S.W. Hawking, O. Obregón, Phys. Lett. B 300, 44 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Socorro, E.R. Medina, Phys. Rev. D 61, 087702 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  32. R. Graham, H. Luckock, Phys. Rev. D 49, 2786 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  33. L.D. Faddeev, A.A. Slavnov, Gauge Fields: An Introduction to Quantum Theory (Addison-Wesley, Reading, MA, 1991) sect. 2.5

  34. S.W. Hawking, D.N. Page, Phys. Rev. D 42, 2655 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  35. P. Moniz, Quantum Cosmology: The supersymmetric perspective, Vols. 1 and 2, in Lect. Notes Phys., Vols. 803 and 804 (Springer, 2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Socorro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Socorro, J., Nuñez, O.E. Scalar potentials with multi-scalar fields from quantum cosmology and supersymmetric quantum mechanics. Eur. Phys. J. Plus 132, 168 (2017). https://doi.org/10.1140/epjp/i2017-11450-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11450-8

Navigation