Skip to main content
Log in

Quantum cosmology of multifield scalar matter: Some exact solutions

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider gravity interacting with matter scalar fields and quantized in the superspace approach in which the wave functional is described by the Wheeler–DeWitt equations. Assuming the dominance of the homogeneous and isotropic geometry, we investigate the leading contribution to the wave functional in the minisuperspace approximation with the Friedmann–Robertson–Walker metric and scalar fields depending on the time parameter. We construct a model of several scalar fields with exponential potentials and kinetic terms admitting a special mixing such that it is ultimately possible to separate the variables in the Wheeler–DeWitt equation and find its exact solution in terms of special functions. We study the semiclassical approximation in detail and choose boundary conditions that allow selecting the physical solution for classical cosmologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Starobinsky, “Stochastic de Sitter (inflationary stage in the early universe),” in: Field Theory, Quantum Gravity, and Strings (Lect. Notes Phys¿, Vol. 246, H. J. de Vega and N. Sánchez, eds.), Springer, Berlin (1986), pp. 107–126

    Google Scholar 

  2. A. D. Linde, Particle Physics and Inflationary Cosmology (Contemp. Concepts Phys., Vol. 5), CRC, Boca Raton, Fla. (1990); arXiv:hep-th/0503203v1 (2005).

    Book  Google Scholar 

  3. A. G. Riess et al. [Supernova Search Team Collab.], Astron. J., 116, 1009–1038 (1998); arXiv:astro-ph/9805201v1 (1998)

    Article  ADS  Google Scholar 

  4. S. Perlmutter et al. [Supernova Cosmology Project Collab.], Astrophys. J., 517, 565–586 (1999); arXiv:astro-ph/9812133v1 (1998).

    Article  ADS  Google Scholar 

  5. V. Sahni and A. A. Starobinsky, Internat. J. Mod. Phys. D, 9, 373–444 (2000); arXiv:astro-ph/9904398v2 (1999)

    ADS  Google Scholar 

  6. V. Sahni and A. A. Starobinsky, Internat. J. Mod. Phys. D, 15, 2105–2132 (2006); arXiv:astro-ph/0610026v3 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. T. Padmanabhan, Phys. Rept., 380, 235–320 (2003); arXiv:hep-th/0212290v2 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. P. J. E. Peebles and B. Ratra, Rev. Modern Phys., 75, 559–606 (2003); arXiv:astro-ph/0207347v2 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. E. J. Copeland, M. Sami, and S. Tsujikawa, Internat. J. Mod. Phys. D, 15, 1753–1936 (2006); arXiv:hep-th/0603057v3 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. F. Lucchin and S. Matarrese, Phys. Rev. D, 32, 1316–1322 (1985).

    Article  ADS  Google Scholar 

  11. J. J. Halliwell, Phys. Lett. B, 185, 341–344 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  12. J. D. Barrow, Phys. Lett. B, 187, 12–16 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  13. A. B. Burd and J. D. Barrow, Nucl. Phys. B, 308, 929–945 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  14. R. de Ritis, G. Marmo, G. Platania, C. Rubano, P. Scudellaro, and C. Stornaiolo, Phys. Rev. D, 42, 1091–1097 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  15. V. Muller, H. J. Schmidt, and A. A. Starobinsky, Class. Q. Grav., 7, 1163–1168 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  16. G. F. R. Ellis and M. S. Madsen, Class. Q. Grav., 8, 667–676 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. A. R. Liddle and R. J. Scherrer, Phys. Rev. D, 59, 023509 (1999); arXiv:astro-ph/9809272v1 (1998).

    Article  ADS  Google Scholar 

  18. V. Gorini, A. Y. Kamenshchik, U. Moschella, and V. Pasquier, Phys. Rev. D, 69, 123512 (2004); arXiv:hep-th/ 0311111v2 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  19. J. M. Aguirregabiria and L. P. Chimento, Class. Q Grav., 13, 3197–3209 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. L. P. Chimento, Class. Q. Grav., 15, 965–974 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. C. Rubano and P. Scudellaro, Gen. Rel. Grav., 34, 307–328; arXiv:astro-ph/0103335v3 (2001).

    Article  MathSciNet  Google Scholar 

  22. C. Rubano and J. D. Barrow, Phys. Rev. D, 64, 127301 (2001); arXiv:gr-qc/0105037v2 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  23. P. K. Townsend, “Cosmic acceleration and M-theory,” in: XIVth International Congress on Mathematical Physics (Lisbon, Portugal, 28 July–2 August 2003, J.-C. Zambrini, ed.), World Scientific, Singapore (2006), pp. 655–662; arXiv:hep-th/0308149v2 (2003).

    Chapter  Google Scholar 

  24. L. P. Chimento, A. E. Cossarini, and N. A. Zuccalá, Class. Q. Grav., 15, 57–74 (1998).

    Article  ADS  MATH  Google Scholar 

  25. P. K. Townsend and M. N. R. Wohlfarth, Phys. Rev. Lett., 91, 061302 (2003); arXiv:hep-th/0303097v3 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  26. R. Emparan and J. Garriga, JHEP, 0305, 028 (2003); arXiv:hep-th/0304124v2 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  27. I. P. Neupane, Class. Q. Grav., 21, 4383–4397 (2004); arXiv:hep-th/0311071v4 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. J. G. Russo, Phys. Lett. B, 600, 185–190 (2004); arXiv:hep-th/0403010v3 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. E. Elizalde E., S. Nojiri, and S. D. Odintsov, Phys. Rev. D, 70, 043539 (2004); arXiv:hep-th/0405034v2 (2004).

    Article  ADS  Google Scholar 

  30. E. Dudas, N. Kitazawa, and A. Sagnotti, Phys. Lett. B, 694, 80–88 (2010); arXiv:1009.0874v1 [hep-th] (2010).

    Article  MathSciNet  ADS  Google Scholar 

  31. A. A. Andrianov, F. Cannata, and A. Yu. Kamenshchik, JCAP, 1110, 004 (2011); arXiv:1105.4515v1 [gr-qc] (2011)

    Article  ADS  Google Scholar 

  32. A. A. Andrianov, F. Cannata, and A. Yu. Kamenshchik, Phys. Rev. D, 86, 107303 (2012).

    Article  ADS  Google Scholar 

  33. E. Piedipalumbo, P. Scudellaro, G. Esposito, and C. Rubano, Gen. Rel. Grav., 44, 2611–2643 (2012); arXiv: 1112.0502v1 [astro-ph.CO] (2011).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. C. Kiefer, Quantum Gravity (Intl. Ser. Monogr. Phys., Vol. 136), Oxford Univ. Press, Oxford (2007).

    Book  MATH  Google Scholar 

  35. Y. F. Cai, E. N. Saridakis, M. R. Setare, and J.-Q. Xia, Phys. Rept., 493, 1–60 (2010); arXiv:0909.2776v2 [hep-th] (2009).

    Article  MathSciNet  ADS  Google Scholar 

  36. T. M. Dunster, SIAM J. Math. Anal., 21, 995–1018 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  37. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Acad. Press, New York (1980).

    Google Scholar 

  38. A. O. Barvinsky and A. Yu. Kamenshchik, Phys. Rev. D, 89, 043526 (2014); arXiv:1312.3147v2 [gr-qc] (2013).

    Article  ADS  Google Scholar 

  39. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers: I. Asymptotic Methods and Perturbation Theory, Springer, New York (1999).

    Book  MATH  Google Scholar 

  40. H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York (1953).

    Google Scholar 

  41. A. A. Andrianov, F. Cannata, A. Yu. Kamenshchik, and D. Regoli, J. Modern Phys. D, 19, 97–111 (2010).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Andrianov.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 184, No. 3, pp. 380–391, September, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrianov, A.A., Novikov, O.O. & Chen, L. Quantum cosmology of multifield scalar matter: Some exact solutions. Theor Math Phys 184, 1224–1233 (2015). https://doi.org/10.1007/s11232-015-0328-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-015-0328-5

Keywords

Navigation