Skip to main content
Log in

FRW in Cosmological Self-creation Theory

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We use the Brans-Dicke theory from the framework of General Relativity (Einstein frame), but now the total energy momentum tensor fulfills the following condition \([\frac{1}{\phi}T^{\mu \nu M}+T^{\mu \nu}(\phi)]_{;\nu}=0\). We take as a first model the flat FRW metric and with the law of variation for Hubble’s parameter proposal by Berman and Gomide (Nuovo Cimento B 74: 182, 1983), we find solutions to the Einstein field equations by the cases: inflation (γ=−1), radiation (\(\gamma=\frac{1}{3}\)), stiff matter (γ=1). For the Inflation case the scalar field grows fast and depends strongly of the constant M γ=−1 that appears in the solution, for the Radiation case, the scalar stop its expansion and then decrease perhaps due to the presence of the first particles. In the Stiff Matter case, the scalar field is decreasing so for a large time, ϕ→0. In the same line of classical solutions, we find an exact solution to the Einstein field equations for the stiff matter (γ=1) and flat universe, using the Hamilton-Jacobi scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berman, M.S., Gomide, F.M.: Nuovo Cimento B 74, 182 (1983)

    Article  ADS  Google Scholar 

  2. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)

    Google Scholar 

  3. Barber, G.A.: Gen. Relativ. Gravit. 14, 117 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  4. Barber, G.A.: A new self-creation cosmology a semi-metric theory of gravitation. Astrophys. Space Sci. 282, 683–730 (2002)

    Article  ADS  Google Scholar 

  5. Barber, G.A.: In: Self-Creation Cosmology. (2010). arXiv:1009.5862v2

    Google Scholar 

  6. Singh, C.P., Kumar, S.: Int. J. Mod. Phys. D 15, 419 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Singh, C.P., Kumar, S.: Bianchi type-II space-times with constant deceleration parameter in self creation cosmology. Astrophys. Space Sci. 310, 31 (2007)

    Article  ADS  Google Scholar 

  8. Singh, C.P., Ram, S., Zeyauddin, M.: Astrophys. Space Sci. 315, 181 (2008)

    Article  ADS  Google Scholar 

  9. Singh, M.K., Verma, M.K., Ram, S.: Adv. Stud. Theor. Phys. 6, 117–127 (2012)

    MATH  Google Scholar 

  10. Singh, T.: Astrophys. Space Sci. 102, 67 (1984)

    Article  ADS  Google Scholar 

  11. Pimentel, L.O.: Astrophys. Space Sci. 116, 395 (1985)

    ADS  MathSciNet  Google Scholar 

  12. Soleng, H.H.: Astrophys. Space Sci. 138, 19 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  13. Soleng, H.H.: Astrophys. Space Sci. 139, 13 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  14. Reddy, D.R.K.: Astrophys. Space Sci. 133, 189 (1987)

    Article  ADS  Google Scholar 

  15. Venkateswarlu, R., Reddy, D.R.K.: Astrophys. Space Sci. 168, 193 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  16. Shri, R., Singh, C.P.: Astrophys. Space Sci. 257, 123 (1998)

    MATH  Google Scholar 

  17. Shri, R., Singh, C.P.: Astrophys. Space Sci. 257, 287 (1998)

    MATH  Google Scholar 

  18. Mohanty, G., Mishra, B., Das, R.: Bull. Inst. Math. Acad. Sin. 28, 43 (2000)

    MATH  MathSciNet  Google Scholar 

  19. Pradhan, A., Vishwakarma, A.K.: Int. J. Mod. Phys. D 11, 1195 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Pradhan, A., Vishwakarma, A.K.: Indian J. Pure Appl. Math. 33, 1239 (2002)

    MATH  MathSciNet  Google Scholar 

  21. Sahu, R.C., Panigrahi, U.K.: Astrophys. Space Sci. 288, 601 (2003)

    Article  ADS  MATH  Google Scholar 

  22. Venkateswarlu, R., Kumar, P.K.: Astrophys. Space Sci. 301, 73 (2006)

    Article  ADS  MATH  Google Scholar 

  23. Chirde, V.R., Rahate, P.N.: Int. J. Theor. Phys. 51, 2262–2271 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Polyanin, A.D., Zaitesev, V.F.: Exact Solutions for Ordinary Differential Equations. Chapman and Hall, London (2003)

    MATH  Google Scholar 

  25. Elsgoltz, L.: Ecuaciones Diferenciales y Cálculo Variacional. Mir, Moscow (1969)

    Google Scholar 

  26. Delgado, M.: The Lagrange-Charpit method. SIAM Rev. 39, 298 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. López, G.: Partial Differential Equations of First Order and Their Applications to Physics. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by DAIP (2011–2012), Promep UGTO-CA-3 and CONACyT 167335 and 179881 grants. JMR was supported by Promep grant ITESJOCO-001. Many calculations where done by Symbolic Program REDUCE 3.8. This work is part of the collaboration within the Advanced Institute of Cosmology and Red PROMEP: Gravitation and Mathematical Physics under project Quantum aspects of gravity in cosmological models, phenomenology and geometry of space-time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Socorro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramírez, J.M., Socorro, J. FRW in Cosmological Self-creation Theory. Int J Theor Phys 52, 2867–2878 (2013). https://doi.org/10.1007/s10773-013-1580-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1580-9

Keywords

Navigation