Skip to main content
Log in

A lattice Boltzmann study of the effects of viscoelasticity on droplet formation in microfluidic cross-junctions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Based on mesoscale lattice Boltzmann (LB) numerical simulations, we investigate the effects of viscoelasticity on the break-up of liquid threads in microfluidic cross-junctions, where droplets are formed by focusing a liquid thread of a dispersed (d) phase into another co-flowing continuous (c) immiscible phase. Working at small Capillary numbers, we investigate the effects of non-Newtonian phases in the transition from droplet formation at the cross-junction (DCJ) to droplet formation downstream of the cross-junction (DC) (Liu and Zhang, Phys. Fluids. 23, 082101 (2011)). We will analyze cases with Droplet Viscoelasticity (DV), where viscoelastic properties are confined in the dispersed phase, as well as cases with Matrix Viscoelasticity (MV), where viscoelastic properties are confined in the continuous phase. Moderate flow-rate ratios \(Q \approx O(1)\) of the two phases are considered in the present study. Overall, we find that the effects are more pronounced with MV, where viscoelasticity is found to influence the break-up point of the threads, which moves closer to the cross-junction and stabilizes. This is attributed to an increase of the polymer feedback stress forming in the corner flows, where the side channels of the device meet the main channel. Quantitative predictions on the break-up point of the threads are provided as a function of the Deborah number, i.e., the dimensionless number measuring the importance of viscoelasticity with respect to Capillary forces.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.F. Christopher, S.L. Anna, J. Phys. D Appl. Phys. 40, R319 (2007)

    Article  ADS  Google Scholar 

  2. G.F. Christopher, N.N. Noharuddin, J.A. Taylor, S.L. Anna, Phys. Rev. E 78, 036317 (2008)

    Article  ADS  Google Scholar 

  3. S. Teh, R. Lin, L. Hung, A. Lee, Lab Chip 8, 198 (2008)

    Article  Google Scholar 

  4. C.N. Baroud, F. Gallaire, R. Dangla, Lab Chip 10, 2032 (2010)

    Article  Google Scholar 

  5. R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus, Rep. Prog. Phys. 75, 016601 (2012)

    Article  ADS  Google Scholar 

  6. T. Glawdel, C. Elbuken, L. Ren, Phys. Rev. E 85, 016322 (2012)

    Article  ADS  Google Scholar 

  7. M.D. Menech, P. Garstecki, F. Jousse, H.A. Stone, J. Fluid. Mech. 595, 141 (2008)

    Article  ADS  Google Scholar 

  8. M.D. Menech, Phys. Rev. E 73, 031505 (2006)

    Article  ADS  Google Scholar 

  9. H. Liu, Y. Zhang, J. Appl. Phys. 106, 034906 (2009)

    Article  ADS  Google Scholar 

  10. H. Liu, Y. Zhang, Phys. Fluids 23, 082101 (2011)

    Article  ADS  Google Scholar 

  11. L. Derzsi, M. Kasprzyk, J.P. Plog, P. Garstecki, Phys. Fluids 25, 092001 (2013)

    Article  ADS  Google Scholar 

  12. J.M. Gordillo, Z. Cheng, A.M. Ganan-Calvo, M. Marquez, D. Weitz, Phys. Fluids 16, 2828 (2004)

    Article  ADS  Google Scholar 

  13. D.R. Link, S.L. Anna, D.A. Weitz, H.A. Stone, Phys. Rev. Lett. 92, 054503 (2005)

    Article  ADS  Google Scholar 

  14. S.L. Anna, N. Bontoux, H.A. Stone, Appl. Phys. Lett. 82, 364 (2003)

    Article  ADS  Google Scholar 

  15. P.E. Arratia, J.P. Gollub, D.J. Durian, Phys. Rev. E 77, 036309 (2008)

    Article  ADS  Google Scholar 

  16. B. Steinhaus, A.Q. Shen, R. Sureshkumar, Phys. Fluids 19, 073103 (2007)

    Article  ADS  Google Scholar 

  17. J. Husny, J. Cooper-White, J. Non-Newton. Fluid Mech. 137, 121 (2006)

    Article  Google Scholar 

  18. P.E. Arratia, L.A. Cramer, J.P. Gollub, D.J. Durian, New J. Phys. 11, 115006 (2009)

    Article  ADS  Google Scholar 

  19. L. Wu, M. Tsutahara, L.S. Kim, M. Ha, Int. J. Multiphase Flow 34, 852 (2008)

    Article  Google Scholar 

  20. R. Benzi, S. Succi, M. Vergassola, Phys. Rep. 222, 145 (1992)

    Article  ADS  Google Scholar 

  21. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, 2001)

  22. J. Zhang, Microfluid. Nanofluid. 10, 1 (2011)

    Article  Google Scholar 

  23. C.K. Aidun, J.R. Clausen, Annu. Rev. Fluid Mech. 42, 439 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. H. Xi, C. Duncan, Phys. Rev. E 59, 3022 (1999)

    Article  ADS  Google Scholar 

  25. R.G.M.V. der Sman, S.V. der Graaf, Comput. Phys. Commun. 178, 492 (2008)

    Article  ADS  Google Scholar 

  26. A.E. Komrakovaa, O. Shardt, D. Eskinb, J.J. Derksen, Int. J. Multiphase Flow 59, 23 (2014)

    Article  Google Scholar 

  27. H. Liu, A.J. Valocchi, Q. Kang, Phys. Rev. E 85, 046309 (2012)

    Article  ADS  Google Scholar 

  28. N. Moradi, F. Varnik, I. Steinbach, EPL 95, 44003 (2011)

    Article  ADS  Google Scholar 

  29. S. Thampi, R. Adhikari, R. Govindarajan, Langmuir 29, 3339 (2013)

    Article  Google Scholar 

  30. A. Gupta, S.M.S. Murshed, R. Kumar, Appl. Phys. Lett. 94, 164107 (2009)

    Article  ADS  Google Scholar 

  31. A. Gupta, R. Kumar, Phys. Fluids 22, 122001 (2010)

    Article  ADS  Google Scholar 

  32. P. Yue, J.J. Feng, C. Liu, J. Shen, J. Fluid Mech. 515, 293 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  33. P. Yue, J.J. Feng, C. Liu, J. Shen, J. Non-Newtonian Fluid Mech. 129, 163 (2005)

    Article  Google Scholar 

  34. P. Yue, C. Zhou, J.J. Feng, C.F. Ollivier-Gooch, H.H. Hu, J. Comput. Phys. 219, 47 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  35. P. Yue, C. Zhou, J.J. Feng, Phys. Fluids 18, 102102 (2006)

    Article  ADS  Google Scholar 

  36. D. Zhou, P. Yue, J.J. Feng, J. Rheol. (1978-present) 52, 469 (2008)

    Article  ADS  Google Scholar 

  37. P. Yue, J.J. Feng, J. Non-Newtonian Fluid Mech. 189, 8 (2012)

    Article  Google Scholar 

  38. C. Wagner, Y. Amarouchene, D. Bonn, J. Eggers, Phys. Rev. Lett. 95, 164504 (2005)

    Article  ADS  Google Scholar 

  39. A. Lindner, J. Vermant, D. Bonn, Physica A 319, 125 (2003)

    Article  ADS  Google Scholar 

  40. A. Gupta, M. Sbragaglia, A. Scagliarini, J. Comput. Phys. 291, 177 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  41. A. Gupta, M. Sbragaglia, Phys. Rev. E 90, 023305 (2014)

    Article  ADS  Google Scholar 

  42. R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of polymeric liquids (J. Wiley & Sons, 1987)

  43. M. Herrchen, H. Oettinger, J. Non-Newtonian Fluid Mech. 68, 17 (1997)

    Article  Google Scholar 

  44. X. Shan, H. Chen, Phys. Rev. E 47, 1815 (1993)

    Article  ADS  Google Scholar 

  45. X. Shan, H. Chen, Phys. Rev. E 49, 2941 (1994)

    Article  ADS  Google Scholar 

  46. D. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction (Springer Verlag, 2001)

  47. P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whiteside, Lab Chip 6, 437 (2006)

    Article  Google Scholar 

  48. J. Tan, J. Xu, S. Li, G. Luo, Chem. Eng. J. 136, 306 (2008)

    Article  Google Scholar 

  49. J. Xu, S. Li, J. Tan, G. Luo, Microfluid. Nanofluid. 5, 711 (2008)

    Article  Google Scholar 

  50. Y.Y. Renardy, V. Cristini, Phys. Fluids 13, 7 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  51. P. Guillot, A. Colin, Phys. Rev. E 72, 066301 (2005)

    Article  ADS  Google Scholar 

  52. B. Dünweg, U.D. Schiller, A.J.C. Ladd, Phys. Rev. E 76, 036704 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  53. D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L.S. Luo, Philos. Trans. R. Soc. London 360, 437 (2002)

    Article  ADS  Google Scholar 

  54. K. Premnath, J. Abraham, J. Comput. Phys. 224, 539 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  55. M. Sega, M. Sbragaglia, S.S. Kantorovich, A.O. Ivanov, Soft Matter 9, 10092 (2013)

    Article  ADS  Google Scholar 

  56. R. Benzi, M. Sbragaglia, S. Succi, M. Bernaschi, S. Chibbaro, J. Chem. Phys. 131, 104903 (2009)

    Article  ADS  Google Scholar 

  57. M. Sbragaglia, R. Benzi, M. Bernaschi, S. Succi, Soft Matter 8, 10773 (2012)

    Article  ADS  Google Scholar 

  58. M. Sbragaglia, D. Belardinelli, Phys. Rev. E 88, 013306 (2013)

    Article  ADS  Google Scholar 

  59. M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, F. Toschi, Phys. Rev. Lett. 97, 204503 (2006)

    Article  ADS  Google Scholar 

  60. M. Sbragaglia, K. Sugiyama, L. Biferale, J. Fluid. Mech. 614, 471 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  61. P. Perlekar, D. Mitra, R. Pandit, Phys. Rev. Lett. 97, 264501 (2006)

    Article  ADS  Google Scholar 

  62. T. Vaithianathan, L.R. Collins, J. Comput. Phys. 187, 1 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Sbragaglia, M. A lattice Boltzmann study of the effects of viscoelasticity on droplet formation in microfluidic cross-junctions. Eur. Phys. J. E 39, 2 (2016). https://doi.org/10.1140/epje/i2016-16002-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16002-1

Keywords

Navigation