Skip to main content
Log in

Generic instabilities in a fluid membrane coupled to a thin layer of ordered active polar fluid

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We develop an effective two-dimensional coarse-grained description for the coupled system of a planar fluid membrane anchored to a thin layer of polar ordered active fluid below. The macroscopic orientation of the active fluid layer is assumed to be perpendicular to the attached membrane. We demonstrate that activity or nonequilibrium drive of the active fluid makes such a system generically linearly unstable for either signature of a model parameter \( \Delta\) \( \mu\) that characterises the strength of activity. Depending upon boundary conditions and within a range of the model parameters, underdamped propagating waves may be present in our model. We discuss the phenomenological significance of our results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Seifert, Adv. Phys. 46, 13 (1997)

    Article  ADS  Google Scholar 

  2. S. Ramaswamy, J. Prost, T.C. Lubensky, Europhys. Lett. 27, 285 (1994)

    Article  ADS  Google Scholar 

  3. S. Ramaswamy, J. Prost, T.C. Lubensky, Europhys. Lett. 23, 271 (1993)

    Article  ADS  Google Scholar 

  4. W. Helfrich, J. Phys. (Paris) 46, 1263 (1985)

    Article  Google Scholar 

  5. H.J. Deuling, W. Helfrich, J. Phys. (Paris) 37, 1335 (1976)

    Article  Google Scholar 

  6. S. Tuvia, A. Almagor, A. Bitler, S. Levin, R. Korenstein, S. Yedgar, Proc. Natl. Acad. Sci. U.S.A. 94, 5045 (1997)

    Article  ADS  Google Scholar 

  7. M. Edidin, Annu. Rev. Biophys. Bioeng. 3, 179 (1974)

    Article  Google Scholar 

  8. J.-B. Manneville, P. Bassereau, S. Ramaswamy, J. Prost, Phys. Rev. E 64, 021908 (2001)

    Article  ADS  Google Scholar 

  9. N.S. Gov, A. Gopinathan, Biophys. J. 90, 454 (2006)

    Article  ADS  Google Scholar 

  10. R. Shlomovitz, N.S. Gov, Phys. Rev. Lett. 98, 168103 (2007)

    Article  ADS  Google Scholar 

  11. J. Zimmermann et al., Biophys. J 102, 287 (2012)

    Article  Google Scholar 

  12. S. Sankararaman, S. Ramaswamy, Phys. Rev. Lett. 102, 118107 (2009)

    Article  ADS  Google Scholar 

  13. N. Sarkar, A. Basu, Eur. Phys. J E 34, 44 (2011)

    Article  ADS  Google Scholar 

  14. N. Sarkar, A. Basu, Eur. Phys. J. E 35, 115 (2012)

    Article  Google Scholar 

  15. A. Basu, J.-F. Joanny, F. Jülicher, J. Prost, New J. Phys. 14, 115001 (2012)

    Article  ADS  Google Scholar 

  16. R.A. Simha, S. Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002)

    Article  ADS  Google Scholar 

  17. K. Kruse, J.F. Joanny, F. Julicher, J. Prost, K. Sekimoto, Eur. Phys. J. E 16, 5 (2005)

    Article  Google Scholar 

  18. S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)

    Article  ADS  Google Scholar 

  19. G.I. Menon, arXiv:1003.2032

  20. J.-F. Joanny, J. Prost, in Biological Physics, Poincaré Seminar 2009, edited by B. Duplantier, V. Rivasseau (Springer, 2009) pp. 1-32

  21. M.C. Marchetti, arXiv:1207.2929

  22. B. Brough et al., Soft Matter 3, 541 (2007)

    Article  ADS  Google Scholar 

  23. C. Mohrdieck et al., Small 3, 1015 (2007)

    Article  Google Scholar 

  24. J. Pécréaux, H.-G. Döbereiner, J. Prost, J.-F. Joanny, P. Bassereau, Eur. Phys. J. E 13, 277 (2004)

    Article  Google Scholar 

  25. F.-C. Tsai, B. Stuhrmann, G.H. Koendrink, Langmuir 27, 10061 (2011)

    Article  Google Scholar 

  26. P.-G. de Gennes, J. Prost,The Physics of Liquid Crystals (Clarendon, Oxford, 1993)

  27. D. Nelson, T. Piran, S. Weinberg (Editors), Statistical Mechanics of Membranes and Surfaces (World Scientific, Singapore, 1989)

  28. T.C. Lubensky, F.C. MacKintosh, Phys. Rev. Lett. 71, 1565 (1993)

    Article  ADS  Google Scholar 

  29. The boundary condition ${\bf p}_\perp = -2 {\boldsymbol \nabla} h$ at $z=h$ may be made exact by additing a term $\lambda_3 ({\bf p}_\perp \times {\boldsymbol \nabla} h)^2,\,\lambda_3 >0$ in the free energy (freesol) and then taking the $\lambda_3 \rightarrow \infty$ limit

  30. We have neglected contributions which are bilinear in ${\bf p}$ and its thermodynamic conjugate in the expressions for the stress. These correspond to the (equilibrium) flow orientation coupling terms of nematic liquid crystals

  31. A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997)

    Article  ADS  Google Scholar 

  32. R. Voituriez, J.-F. Joanny, J. Prost, Europhys. Lett. 70, 404 (2005)

    Article  ADS  Google Scholar 

  33. P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, N., Basu, A. Generic instabilities in a fluid membrane coupled to a thin layer of ordered active polar fluid. Eur. Phys. J. E 36, 86 (2013). https://doi.org/10.1140/epje/i2013-13086-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13086-y

Keywords

Navigation