Skip to main content
Log in

Membrane undulations in a structured fluid: Universal dynamics at intermediate length and time scales

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The dynamics of membrane undulations inside a viscous solvent is governed by distinctive, anomalous, power laws. Inside a viscoelastic continuous medium these universal behaviors are modified by the specific bulk viscoelastic spectrum. Yet, in structured fluids the continuum limit is reached only beyond a characteristic correlation length. We study the crossover to this asymptotic bulk dynamics. The analysis relies on a recent generalization of the hydrodynamic interaction in structured fluids, which shows a slow spatial decay of the interaction toward the bulk limit. For membranes which are weakly coupled to the structured medium we find a wide crossover regime characterized by different, universal, dynamic power laws. We discuss various systems for which this behavior is relevant, and delineate the time regime over which it may be observed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Alberts, Essential Cell Biology, 4th edition (Garland Science, 2013)

  2. U. Seifert, Adv. Phys. 46, 13 (1997)

    Article  ADS  Google Scholar 

  3. S.A. Safran, Statistical Thermodynamics Of Surfaces, Interfaces, and Membranes (Westview Press, 2003)

  4. F. Brochard, J.F. Lennon, J. Phys. (Paris) 36, 1035 (1975)

    Article  Google Scholar 

  5. U. Seifert, S.A. Langer, Europhys. Lett. 23, 71 (1993)

    Article  ADS  Google Scholar 

  6. A.G. Zilman, R. Granek, Phys. Rev. Lett. 77, 4788 (1996)

    Article  ADS  Google Scholar 

  7. A.G. Zilman, R. Granek, Chem. Phys. 284, 195 (2002)

    Article  ADS  Google Scholar 

  8. M.C. Watson, Y. Peng, Y. Zheng, F.L.H. Brown, J. Chem. Phys. 135, 194701 (2011)

    Article  ADS  Google Scholar 

  9. R.J. Bingham, S.W. Smye, P.D. Olmsted, EPL 111, 18004 (2015)

    Article  ADS  Google Scholar 

  10. R. Granek, J. Phys. II 7, 1761 (1997)

    Google Scholar 

  11. R. Joannic, L. Auvray, D.D. Lasic, Phys. Rev. Lett. 78, 3402 (1997)

    Article  ADS  Google Scholar 

  12. E. Sackmann, M. Tanaka, Trends Biotechnol. 18, 58 (2000)

    Article  Google Scholar 

  13. M. Tanaka, E. Sackmann, Nature 437, 656 (2005)

    Article  ADS  Google Scholar 

  14. M. Mihailescu, M. Monkenbusch, J. Allgaier, H. Frielinghaus, D. Richter, Phys. Rev. E 66, 041504 (2002)

    Article  ADS  Google Scholar 

  15. R. Iniguez-Palomares, H. Acuna-Campa, A. Maldonado, Phys. Rev. E 84, 011604 (2011)

    Article  ADS  Google Scholar 

  16. F.-C. Tsai, B. Stuhrmann, G.H. Koenderink, Langmuir 27, 10061 (2011)

    Article  Google Scholar 

  17. R. Granek, Soft Matter 7, 5281 (2011)

    Article  ADS  Google Scholar 

  18. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, 1988)

  19. A. Sonn-Segev, A. Bernheim-Grosswasser, H. Diamant, Y. Roichman, Phys. Rev. Lett. 112, 088301 (2014)

    Article  ADS  Google Scholar 

  20. A. Sonn-Segev, A. Bernheim-Grosswasser, Y. Roichman, Soft Matter 10, 8324 (2014)

    Article  ADS  Google Scholar 

  21. H. Diamant, Eur. Phys. J. E 38, 32 (2015)

    Article  Google Scholar 

  22. P.-G. de Gennes, Macromolecules 9, 587 (1976)

    Article  ADS  Google Scholar 

  23. P.-G. de Gennes, Macromolecules 9, 594 (1976)

    Article  ADS  Google Scholar 

  24. M. Doi, A. Onuki, J. Phys. II 2, 1631 (1992)

    Google Scholar 

  25. S.T. Milner, Phys. Rev. E 48, 3674 (1993)

    Article  ADS  Google Scholar 

  26. A.J. Levine, T.C. Lubensky, Phys. Rev. E 63, 041510 (2001)

    Article  ADS  Google Scholar 

  27. J.-B. Fournier, Int. J. Nonlinear Mech. 75, 67 (2015)

    Article  ADS  Google Scholar 

  28. H. Diamant, Isr. J. Chem. 47, 225 (2007)

    Article  Google Scholar 

  29. M. Rubinstein, E. Colby, Polymer Physics (Oxford, 2003)

  30. R. Granek, M.E. Cates, J. Chem. Phys. 96, 4758 (1992)

    Article  ADS  Google Scholar 

  31. C.P. Broedersz, F.C. MacKintosh, Rev. Mod. Phys. 86, 995 (2014)

    Article  ADS  Google Scholar 

  32. F. Gittes, F.C. MacKintosh, Phys. Rev. E 58, R1241 (1998)

    Article  ADS  Google Scholar 

  33. D.C. Morse, Macromolecules 31, 7044 (1998)

    Article  ADS  Google Scholar 

  34. P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, 1979)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim Diamant.

Additional information

This article is dedicated to the dear memory of Loïc Auvray, a colleague and friend whose wisdom was matched only by his kindness.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granek, R., Diamant, H. Membrane undulations in a structured fluid: Universal dynamics at intermediate length and time scales. Eur. Phys. J. E 41, 1 (2018). https://doi.org/10.1140/epje/i2018-11607-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11607-x

Keywords

Navigation