Skip to main content
Log in

Neutron reflectivity of supported membranes incorporating terminally anchored polymers: Protrusions vs. blisters

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The effect of terminally anchored chains on the structure of lipid bilayers adsorbed at the solid/water interface was characterized by neutron reflectivity. In the studied system, the inner leaflet, closer to the substrate, consisted of head-deuterated 1,2-distearoyl-sn-glycero-3-phosphorylcholine (DSPC) and the outer leaflet comprised a mixture of DSPC and polyethylene glycol (PEG) functionalized 1,2-distearoyl-sn-glycero-3-phosphoethanolamine. The DSPC headgroups were deuterated to enhance sensitivity and demarcate the bilayer/water interface. The effect on the inner and outer headgroup layers was characterized by w 1/2 , the width at half-height of the scattering length density profile. The inner headgroup layer was essentially unperturbed while w 1/2 of the outer layer increased significantly. This suggests that the anchored PEG chains give rise to headgroup protrusions rather than to blister-like membrane deformations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Lodish, Molecular Cell Biology (WH Freeman and Co, New York, 2000)

  2. D. Lasic, F. Martin, Stealth Liposomes (CRC Press, Boca Raton, FL, 1995)

  3. H.E. Warriner, S.H.J. Idziak, N.L. Slack, P. Davidson, C.R. Safinya, Science 27, 961 (1996)

    Google Scholar 

  4. E. Eisenriegler, Polymers Near Surfaces (World Scientific, Singapore, 1993)

  5. R. Lipowsky, Europhys. Lett. 30, 197 (1995)

    Article  ADS  Google Scholar 

  6. M. Breidenich, R.R. Netz, R. Lipowsky, Europhys. Lett. 49, 431 (2000)

    Article  ADS  Google Scholar 

  7. T. Bickel, C.M. Marques, C. Jeppesen, Phys. Rev. E 62, 1124 (2000)

    Article  ADS  Google Scholar 

  8. T. Bickel, C. Jeppesen, C.M. Marques, Eur. Phys. J. E 4, 33 (2001)

    Article  Google Scholar 

  9. C. Hiergeist, R. Lipowsky, J. Phys. II 6, 1465 (1996)

    Article  Google Scholar 

  10. J.N. Israelachvili, H. Wennerstrom, J. Phys. Chem. 96, 520 (1992)

    Article  Google Scholar 

  11. G.A.E. Aniansson, S.N. Wall, M. Almgren, H. Hoffman, I. Kielmann, W. Ulbricht, R. Zana, J. Lang, C. Tondre, J. Phys. Chem. 80, 905 (1976)

    Article  Google Scholar 

  12. G.A.E. Aniansson, J. Phys. Chem. 82, 2805 (1978)

    Article  Google Scholar 

  13. A. Halperin, O.G. Mouritsen, Eur. Biophys. J. Biophys. Lett. 34, 967 (2005)

    Article  Google Scholar 

  14. R. Lipowsky, S. Grotehans, Europhys. Lett. 23, 599 (1993)

    Article  ADS  Google Scholar 

  15. R. Goetz, G. Gompper, R. Lipowsky, Phys. Rev. Lett. 82, 22 (1999)

    Article  ADS  Google Scholar 

  16. O.G. Berg, M.H. Gelb, M.-D. Tsai, M.K. Jain, Chem. Rev. 101, 2613 (2001)

    Article  Google Scholar 

  17. D.A. Six, E.A. Dennis, Biochim. Biophys. Acta 1, 1488 (2000)

    Google Scholar 

  18. O.G. Mouritsen, T.L. Andersen, A. Halperin, P.L. Hansen, A.S. Jakobsen, U. Bernchou Jensen, M.O. Jensen, K. Jorgensen, T. Kaasgard, C. Leidy, A. Cohen Simonsen, G.H. Peters, M. Weiss, J. Phys.: Condens. Matter 18, S1293 (2006)

    Article  ADS  Google Scholar 

  19. J. Majewski, T.L. Kuhl, M.C. Gerstenberg, J.N. Israelachvili, G.S. Smith, J. Phys. Chem. B 101, 3122 (1997)

    Article  Google Scholar 

  20. J. Majewski, T.L. Kuhl, K. Kjaer, M.C. Gerstenberg, J. Als-Nielsen, J.N. Israelachvili, G.S. Smith, J. Am. Chem. Soc. 120, 1469 (1998)

    Article  Google Scholar 

  21. T.L. Kuhl, J. Majewski, J.Y. Wong, S. Steinberg, D.E. Leckband, J.N. Israelachvili, G.S. Smith, Biophys. J. 75, 2352 (1998)

    Article  Google Scholar 

  22. G. Fragneto, T. Charitat, F. Graner, K. Mecke, L. Perino-Gallice, E. Bellet-Amalric, Europhys. Lett. 53, 100 (2001)

    Article  ADS  Google Scholar 

  23. G. Fragneto-Cusani, J. Phys.: Condens. Matter 13, 4973 (2001)

    Article  ADS  Google Scholar 

  24. S. Alexander, J. Phys. (Paris) 38, 977 (1977)

    Article  Google Scholar 

  25. S.T. Milner, Science 251, 905 (1991)

    Article  ADS  Google Scholar 

  26. A. Halperin, M.V. Tirrell, T.P. Lodge, Adv. Polym. Sci. 100, 31 (1992)

    Article  Google Scholar 

  27. Equation (eq:A1) is obtained from the $\Gamma\rightarrow\infty$ limit of eq. (II-17) of ref. EKB1982. The $\Gamma\rightarrow\infty$ limit corresponds to an impenetrable surface with no adsorption energy

  28. E. Eisenriegler, K. Kremer, K. Binder, J. Chem. Phys. 77, 6296 (1982)

    Article  ADS  Google Scholar 

  29. E. Loizou, L. Porcar, P. Schexnailder, G.S. Schmidt, P. Butler, Macromolecules 43, 1041 (2010)

    Article  ADS  Google Scholar 

  30. R. Cubitt, G. Fragneto, Appl. Phys. A 74, 329 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Fragneto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fragneto, G., Halperin, A., Klösgen, B. et al. Neutron reflectivity of supported membranes incorporating terminally anchored polymers: Protrusions vs. blisters. Eur. Phys. J. E 36, 3 (2013). https://doi.org/10.1140/epje/i2013-13003-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13003-6

Keywords

Navigation