Skip to main content
Log in

Dielectrophoresis of nanocolloids: A molecular dynamics study

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Dielectrophoresis (DEP), the motion of polarizable particles in non-uniform electric fields, has become an important tool for the transport, separation, and characterization of microparticles in biomedical and nanoelectronics research. In this article we present, to our knowledge, the first molecular dynamics simulations of DEP of nanometer-sized colloidal particles. We introduce a simplified model for a polarizable nanoparticle, consisting of a large charged macroion and oppositely charged microions, in an explicit solvent. The model is then used to study DEP motion of the particle at different combinations of temperature and electric field strength. In accord with linear response theory, the particle drift velocities are shown to be proportional to the DEP force. Analysis of the colloid DEP mobility shows a clear time dependence, demonstrating the variation of friction under non-equilibrium. The time dependence of the mobility further results in an apparent weak variation of the DEP displacements with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Pohl, J. Appl. Phys. 22, 869 (1951).

    Article  Google Scholar 

  2. H.A. Pohl, J. Appl. Phys. 29, 1182 (1958).

    Article  Google Scholar 

  3. A. Ramos, H. Morgan, N.G. Green, A. Castellanos, J. Phys. D 31, 2338 (1998).

    Article  Google Scholar 

  4. S.W. Lee, R. Bashir, Appl. Phys. Lett. 83, 3833 (2003).

    Article  Google Scholar 

  5. A. Bezryadin, C. Dekker, G. Schmid, Appl. Phys. Lett. 71, 1273 (1997).

    Article  Google Scholar 

  6. L. Zheng, S. Li, J.P. Brody, P.J. Burke, Langmuir 20, 8612 (2004).

    Article  PubMed  Google Scholar 

  7. P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, T.E. Mallouk, Appl. Phys. Lett. 77, 1399 (2000).

    Article  Google Scholar 

  8. K.D. Hermanson, S.O. Lumsdon, J.P. Williams, E.W. Kaler, O.D. Velev, Science 294, 1082 (2001).

    Article  PubMed  Google Scholar 

  9. K. Yamamoto, S. Akita, Y. Nakayama, J. Phys. D 31, L34 (1998).

  10. R.H.M. Chan, C.K.M. Fung, W.J. Li, Nanotechnology 15, S672 (2004).

  11. M.P. Hughes, Nanotechnology 11, 124 (2000).

    Article  Google Scholar 

  12. P.J. Burke, in Encyclopedia of Nanoscience and Nanotechnology, edited by H.S. Nalwa (American Scientific Publishers, Stevenson Ranch, CA, 2004).

  13. G.H. Markx, Y. Huang, X. Zhou, R. Pethig, Microbiology 140, 585 (1994).

    Google Scholar 

  14. M. Washizu, S. Suzuki, O. Kurosawa, T. Nishizaka, T. Shinohara, IEEE Trans. Indust. Appl. 30, 835 (1994).

    Article  Google Scholar 

  15. F.F. Becker, X.-B. Wang, Y. Huang, R. Pethig, J. Vykoukal, P.R.C. Gascoyne, J. Phys. D 27, 2659 (1994).

    Article  Google Scholar 

  16. M.P. Hughes, H. Morgan, J. Phys. D 31, 2205 (1998).

    Article  Google Scholar 

  17. H. Morgan, M.P. Hughes, N.G. Green, Biophys. J. 77, 516 (1999).

    PubMed  Google Scholar 

  18. C.-F. Chou, J.O. Tegenfeldt, O. Bakajin, S.S. Chan, E.C. Cox, N. Darnton, T. Duke, R.H. Austin, Biophys. J. 83, 2170 (2002).

    PubMed  Google Scholar 

  19. Y. Huang, S. Joo, M. Duhon, M. Heller, B. Wallace, X. Xu, Anal. Chem. 74, 3362 (2002).

    Article  PubMed  Google Scholar 

  20. D.S. Gray, J.L. Tan, J. Voldman, C.S. Chen, Biosens. Bioelectr. 19, 1765 (2004).

    Article  Google Scholar 

  21. J.P. Huang, M. Karttunen, K.W. Yu, L. Dong, Phys. Rev. E 67, 021403 (2003).

    Article  Google Scholar 

  22. J.P. Huang, M. Karttunen, K.W. Yu, L. Dong, G.Q. Gu, Phys. Rev. E 69, 051402 (2004).

    Article  Google Scholar 

  23. M. Tanaka, A.Y. Grosberg, Eur. Phys. J. E 7, 371 (2002).

    Google Scholar 

  24. I.-C. Yeh, G. Hummer, Biophys. J. 86, 681 (2004).

    PubMed  Google Scholar 

  25. P. Linse, V. Lobaskin, Phys. Rev. Lett. 83, 4208 (1999).

    Article  Google Scholar 

  26. R. Messina, C. Holm, K. Kremer, Phys. Rev. Lett. 85, 872 (2000).

    Article  PubMed  Google Scholar 

  27. M. Patra, M. Patriarca, M. Karttunen, Phys. Rev. E 67, 031402 (2003).

    Article  Google Scholar 

  28. D.J. Klingenberg, F. van Swol, C.F. Zukovski, J. Chem. Phys. 91, 7888 (1989).

    Google Scholar 

  29. R. Tao, Q. Jiang, Phys. Rev. Lett. 73, 205 (1994).

    Article  PubMed  Google Scholar 

  30. A.P. Lyubartsev, M. Karttunen, I. Vattulainen, A. Laaksonen, Soft Mater. 1, 121 (2003).

    Google Scholar 

  31. M. Karttunen, I. Vattulainen, A. Lukkarinen (Editor), Novel Methods in Soft Matter Simulations, Lect. Notes Phys., Vol. 640 (Springer Verlag, Berlin, 2004).

  32. I. Vattulainen, M. Karttunen, in Handbook of Theoretical and Computational Nanotechnology, edited by M. Rieth, W. Schommers (American Scientific Publishers, Stevenson Ranch, CA, 2005).

  33. T. Murtola, E. Falck, M. Patra, M. Karttunen, I. Vattulainen, J. Chem. Phys. 121, 9156 (2004).

    PubMed  Google Scholar 

  34. J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971).

    Article  Google Scholar 

  35. B.B. Laird, J.L. Skinner, J. Chem. Phys. 90, 3274 (1989).

    Article  Google Scholar 

  36. R. Messina, J. Chem. Phys. 117, 11062 (2002).

    Article  Google Scholar 

  37. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984).

    Article  Google Scholar 

  38. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1989).

  39. B. Dünweg, K. Kremer, J. Chem. Phys. 99, 6983 (1993).

    Article  Google Scholar 

  40. J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic Press, San Diego, 1986).

  41. M. Bishop, J.P.J. Michels, Chem. Phys. Lett. 94, 209 (1983).

    Article  Google Scholar 

  42. T. Scopigno, R. Di Leonardo, L. Comez, A.Q.R. Baron, D. Fioretto, G. Ruocco, Phys. Rev. Lett. 94, 155301 (2005).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Salonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salonen, E., Terama, E., Vattulainen, I. et al. Dielectrophoresis of nanocolloids: A molecular dynamics study. Eur. Phys. J. E 18, 133–142 (2005). https://doi.org/10.1140/epje/i2004-10157-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10157-2

PACS.

Navigation