Skip to main content
Log in

Vibrated sessile drops: Transition between pinned and mobile contact line oscillations

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We study the effects of vertical vibrations on non-wetting large water sessile drops flattened by gravity. The solid substrate is characterized by a finite contact angle hysteresis (10-15 degrees). By varying the frequency and the amplitude of the vertical displacement, we observe two types of oscillations. At low amplitude, the contact line remains pinned and the drop presents eigen modes at different resonance frequencies. At higher amplitude, the contact line moves: it remains circular but its radius oscillates at the excitation frequency. The transition between these two regimes arises when the variations of contact angle exceed the contact angle hysteresis. We interpret different features of these oscillations, such as the decrease of the resonance frequencies at larger vibration amplitudes. The hysteresis acts as “solid” friction on the contour oscillations, and gives rise to a stick-slip regime at intermediate amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Lamb, Hydrodynamics (Cambridge University Press, 1932).

  2. C. Bisch, A. Lasek, H. Rodot, J. Mec. Theor. Appl. 1, 165 (1982).

    Google Scholar 

  3. M. Strani, F. Sabetta, J. Fluid Mech. 141, 233 (1984).

    MATH  Google Scholar 

  4. Y. Watanabe, Jpn. J. Appl. Phys. 24, 351 (1985).

    Google Scholar 

  5. T. Tsukada, M. Sato, N. Imaishi, et al. , J. Chem. Eng. Jpn. 20, 88 (1987).

    Google Scholar 

  6. R.W. Smithwick, J.A.M. Boulet, J. Colloid Interface Sci. 130, 588 (1988).

    Article  Google Scholar 

  7. R.W. Smithwick, D.M. Hembree, J. Colloid Interface Sci. 140, 57 (1990).

    Article  Google Scholar 

  8. D.W. DePaoli, T.C. Scott, O.A. Basaran, Sep. Sci. Technol. 27, 2071 (1992).

    Google Scholar 

  9. O.A. Basaran, D.W. DePaoli, Phys. Fluids 6, 2923 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  10. E.D. Wilkes et al. , Phys. Fluids 9, 1512 (1997).

    Article  Google Scholar 

  11. B. Vukasinovic, A. Glezer, M.K. Smith, Phys. Fluids 12, (2000) S12.

    Google Scholar 

  12. A.J. James, B. Vukasinovic, M.K. Smith et al. , J. Fluid Mech. 476, 1 (2003).

    Article  MATH  Google Scholar 

  13. A.J. James, M.K. Smith, Ari Glezer, J. Fluid Mech. 476, 29 (2003).

    Article  MATH  Google Scholar 

  14. M. Rein, Fluid Dyn. Res. 12, 61 (1993).

    Article  Google Scholar 

  15. V. Bergeron, D. Quere, Phys. World 14, 27 (2001).

    Google Scholar 

  16. D. Richard, D. Quere, Europhys. Lett. 50, 769 (2000).

    Article  Google Scholar 

  17. K. Okumura, F. Chevy, D. Richard, et al. , Europhys. Lett. 62, 237 (2003).

    Article  Google Scholar 

  18. M. Perez, L. Salvo, M. Suéry, et al. , Phys. Rev. E 61, 2669 (2000).

    Article  Google Scholar 

  19. N.E. Bixler, R.E. Benner, 4th International Conference on Numerical Methods in Laminar and Turbulent Flow (Pineridge Press, Swansea, 1985) p. 1336.

  20. L.M. Hocking, J. Fluid Mech. 179, 267 (1987).

    MATH  Google Scholar 

  21. G.W. Young, D. S.H., J. Fluid Mech. 174, 327 (1987).

    Google Scholar 

  22. C.-L. Ting, M. Perlin, J. Fluid Mech. 295, 263 (1995).

    Google Scholar 

  23. C. Andrieu, C. Sykes, F. Brochard, Langmuir 10, 2077 (1994).

    Google Scholar 

  24. M. Fabretto, R. Sedev, J. Ralston, Proceedings of the Third International Symposium on Contact Angle, Wettability and Adhesion, edited by K.L. Mittal, Vol. 3 (VSP International Science Publishers, 2003) p. 161.

  25. T.S. Meiron, A. Marmur, I.S. Saguy, J. Colloid Interface Sci. 274, 637 (2004).

    Article  Google Scholar 

  26. L. Landau, M. Lifshitz, Fluid Mechanics, 2nd edition (Butterworth-Heinemann, 1987).

  27. J.F. Joanny, PhD Thesis, University Paris VI, 1985.

  28. J.P. Den Hartog, Trans. Am. Soc. Mech. Eng. 53, 107 (1931).

    Google Scholar 

  29. S.W. Shaw, J. Sound Vib. 108, 305 (1986).

    MathSciNet  Google Scholar 

  30. H.-K. Hong, C.-S. Liu, J. Sound Vib. 229, 1171 (2000).

    Article  Google Scholar 

  31. Y. Gu, D. Li, Colloids Surfaces A: Physicochem. Eng. Asp. 142, 243 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Noblin.

Additional information

Received: 4 April 2004, Published online: 10 August 2004

PACS:

47.55.Dz Drops and bubbles - 68.08.Bc Wetting - 47.35. + i Hydrodynamic waves

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noblin, X., Buguin, A. & Brochard-Wyart, F. Vibrated sessile drops: Transition between pinned and mobile contact line oscillations. Eur. Phys. J. E 14, 395–404 (2004). https://doi.org/10.1140/epje/i2004-10021-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10021-5

Keywords

Navigation