Skip to main content
Log in

Dancing drops over vibrating substrates

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We study the motion of a liquid drop on a solid plate simultaneously submitted to horizontal and vertical harmonic vibrations. The investigation is done via a phase field model earlier developed for describing static and dynamic contact angles. The density field is nearly constant in every bulk region (ρ = 1 in the liquid phase, ρ ≈ 0 in the vapor phase) and varies continuously from one phase to the other with a rapid but smooth variation across the interfaces. Complicated explicit boundary conditions along the interface are avoided and captured implicitly by gradient terms of ρ in the hydrodynamic basic equations. The contact angle θ is controlled through the density at the solid substrate ρ S , a free parameter varying between 0 and 1 [R. Borcia, I.D. Borcia, M. Bestehorn, Phys. Rev. E 78, 066307 (2008)]. We emphasize the swaying and the spreading modes, earlier theoretically identified by Benilov and Billingham via a shallow-water model for drops climbing uphill along an inclined plane oscillating vertically [E.S. Benilov, J. Billingham, J. Fluid Mech. 674, 93 (2011)]. The numerical phase field simulations will be completed by experiments. Some ways to prevent the release of the dancing drops along a hydrophobic surface into the gas atmosphere are also discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.K. Chaudhury, G.M. Whitesides, Science 256, 5063 (1992)

    Article  Google Scholar 

  2. S. Daniel, M.K. Chaudhury, Langmuir 18, 3404 (2002)

    Article  Google Scholar 

  3. S. Daniel, M.K. Chaudhury, P.-G. de Gennes, Langmuir 21, 4240 (2005)

    Article  Google Scholar 

  4. P. Brunet, J. Eggers, R.D. Deegan, Phys. Rev. Lett. 99, 144501 (2007)

    Article  ADS  Google Scholar 

  5. P. Brunet, J. Eggers, R.D. Deegan, Eur. Phys. J. Special Topics 166, 11 (2009)

    Article  ADS  Google Scholar 

  6. K. John, U. Thiele, Phys. Rev. Lett. 104, 107801 (2010)

    Article  ADS  Google Scholar 

  7. K. John, U. Thiele, Chem. Phys. 375, 578 (2010)

    Article  ADS  Google Scholar 

  8. L. Rayleigh, Proc. R. Soc. Lond. 29, 71 (1879)

    Article  Google Scholar 

  9. H. Lamb, Hydrodynamics (Cambridge University Press, 1932), p. 475

  10. L.D. Landau, E. Lifshitz, Fluid Mechanics (Pergamon, New York, 1984), Vol. 6, p. 244

  11. S. Chandrasekhar, Proc. Lond. Math. Soc. 9, 141 (1959)

    Article  Google Scholar 

  12. W.H. Reid, Q. Appl. Math. 18, 86 (1960)

    Article  Google Scholar 

  13. C.A. Miller, L.E. Scriven, J. Fluid Mech. 32, 417 (1968)

    Article  ADS  Google Scholar 

  14. A.E. Korenchenko, V.P. Beskachko, Phys. Fluids 25, 112106 (2013)

    Article  ADS  Google Scholar 

  15. W. Bouwhuis, K.G. Winkels, I.R. Peters, P. Brunet, D. van der Meer, J.H. Snoeijer, Phys. Rev. E 88, 023017 (2013)

    Article  ADS  Google Scholar 

  16. F. Celestini, T. Frisch, A. Cohen, C. Rausfaste, L. Duchemin, Y. Pomeau, Phys. Fluids 26, 032103 (2014)

    Article  ADS  Google Scholar 

  17. D. Mampallil, H.B. Eral, A. Staicu, F. Mugele, D. van den Ende, Phys. Rev. E 88, 053015 (2013)

    Article  ADS  Google Scholar 

  18. E.S. Benilov, Phys. Rev. E 84, 066301 (2011)

    Article  ADS  Google Scholar 

  19. E.S. Benilov, J. Billingham, J. Fluid Mech. 674, 93 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  20. E.S. Benilov, C.P. Cummins, Phys. Rev. E 88, 023013 (2013)

    Article  ADS  Google Scholar 

  21. J. Bradshaw, J. Bilingham, Phys. Rev. E 93, 013123 (2016)

    Article  ADS  Google Scholar 

  22. R. Borcia, M. Bestehorn, Phys. Rev. E 75, 056309 (2007)

    Article  ADS  Google Scholar 

  23. R. Borcia, I.D. Borcia, M. Bestehorn, Phys. Rev. E 78, 066307 (2008)

    Article  ADS  Google Scholar 

  24. R. Borcia, M. Bestehorn, Langmuir 25, 1919 (2009)

    Article  Google Scholar 

  25. R. Borcia, S. Menzel, M. Bestehorn, S. Karpitschka, H. Riegler, Eur. Phys. J. E 34, 24 (2011)

    Article  Google Scholar 

  26. R. Borcia, M. Bestehorn, Eur. Phys. J. E 34, 81 (2011)

    Article  Google Scholar 

  27. R. Borcia, M. Bestehorn, Langmuir 29, 4426 (2013)

    Article  Google Scholar 

  28. D.M. Anderson, G.B. McFadden, A.A. Wheeler, Ann. Rev. Fluid Mech. 30, 139 (1998)

    Article  ADS  Google Scholar 

  29. L.M. Pismen, Y. Pomeau, Phys. Rev. E 62, 2480 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  30. B. Zoltowski, Y. Chekanov, J. Masere, J.A. Pojman, V. Volpert, Langmuir 23, 5522 (2007)

    Article  Google Scholar 

  31. R. Borcia, I.D. Borcia, M. Bestehorn, Eur. Phys. J. Special Topics 166, 127 (2009)

    Article  ADS  Google Scholar 

  32. R. Borcia, I.D. Borcia, M. Bestehorn, Langmuir 30, 14113 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodica Borcia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borcia, R., Borcia, I.D., Helbig, M. et al. Dancing drops over vibrating substrates. Eur. Phys. J. Spec. Top. 226, 1297–1306 (2017). https://doi.org/10.1140/epjst/e2016-60202-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60202-6

Navigation