Skip to main content
Log in

Can the glass transition in bulk polymers be modeled by percolation picture?

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Recent observations (Eur. Phys. J. E 9, 135 (2002)) showed that the vitrification process, which sets in during the linear bulk methyl methacrylate (MMA) polymerization carried out below glass transition temperatures, can be modelled by static percolation picture. To generalize this observation for different kind of bulk linear or crosslinked polymers not enough data are present in the literature. To cover partly this deficit we studied the glass transition of MMA and styrene (Sty) crosslinking copolymerization in varying ratios of MMA and Sty. Both the fluorescence intensity I and the lifetime \(\tau \) of pyrene (Py) used as a nanosecond in situ fluoroprobe were monitored during the gelation time. Both I and \(\tau \) increase dramatically as a result of the reduced mobility of the probes trapped in the “glassy” regions, appearing near the glass transition point. The average size of the glassy regions just below, and the strength of the infinite network formed upon the connection of the glassy regions above the glass transition point \(t_{\rm g}\) obey power law relations. The data around \(t_{\rm g}\) were interpreted on the basis of the percolation theory and we observed that the corresponding exponents \(\gamma \) and \(\beta \) give static percolation values independent of the polymer composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Qin, W. Guo, Z. Zhang, Polymer 43, 1163 (2002).

    Article  Google Scholar 

  2. Ö. Pekcan, Y. Yılmaz, O. Okay, Polymer 38, 1693 (1997).

    Article  Google Scholar 

  3. O. Okay, D. Kaya, O. Pekcan, Polymer 40, 6179 (1999).

    Article  Google Scholar 

  4. H.K. Mahadabi, K.F. O’Driscol, J. Polym. Sci. Polym. Chem. Ed. 15, 283 (1977).

    Article  Google Scholar 

  5. J. Dionisio, H.K. Mahadabi, K.F. O’Driscol, J. Polym. Sci. Polym. Chem. Ed. 17, 1891 (1979).

    Article  Google Scholar 

  6. I.A. Maxwell, G.T. Russell, Macromol. Theory Simul. 2, 95 (1993).

    Article  MATH  Google Scholar 

  7. M.D. Ediger, C.A. Angell, S.R. Nagel, J. Phys. Chem. 100, 13200 (1996).

    Article  Google Scholar 

  8. D. Panke, M. Stickler, W. Wunderlich, Macromol. Chem. 184, 175 (1983).

    Article  Google Scholar 

  9. S. Zhu, Y. Tian, A.E. Hamielec, D.R. Eaton, Polymer 31, 154 (1990).

    Article  MATH  Google Scholar 

  10. G.A. O’Neil, J.M. Torkelson, Macromolecules 32, 411 (1999).

    Article  Google Scholar 

  11. G.A. O’Neil, M.B . Wisdual, AIChE J. 44, 1226 (1998).

    Article  Google Scholar 

  12. S. Zhu, A.E. Hamielec, Polymer 32,3021 (1991).

    Article  Google Scholar 

  13. S.T. Balke, A.E. Hamielec, J. Appl. Polym. Sci. 17, 905 (1973).

    Article  Google Scholar 

  14. A.W.T. Hui, A.E. Hamielec, Polymer 16, 749 (1972).

    Article  Google Scholar 

  15. P.F. Jones, S. Siegel, J. Chem. Phys. 50, 1134 (1969).

    Article  Google Scholar 

  16. F.R. Blackburn, C.-Y. Wang, M.D. Ediger, J. Phys. Chem. 100, 18249 (1996).

    Article  Google Scholar 

  17. a) J.-P. Fouassier, Photoinitiation, Photopolymerization and Photocuring (Hanser Publishers, Munich, Viana, New York, 1995) p. 49; b) M.T. Cicerone, F.R. Blackburn, M.D. Ediger, Macromolecules 28, 8224 (1995).

    Google Scholar 

  18. M.T. Cicerone, P.A. Wagner, M.D. Ediger, J. Phys. Chem. B 101, 8727 (1997).

    Article  Google Scholar 

  19. W. Zhu, M.D. Ediger, Macromolecules 30, 1205 (1997).

    Article  Google Scholar 

  20. C.-Y. Wang, M.D. Ediger, J. Phys. Chem. 104, 1724 (2000).

    Article  Google Scholar 

  21. J. -W. Park, M.D. Ediger, M.M. Green, J. Am. Chem. Soc. 123, 49 (2001).

    Article  Google Scholar 

  22. Y. Yılmaz, Y. Yagcı, Ö. Pekcan, J. Macromol. Sci.-Pure Appl. Chem. A 38, 741 (2001).

    Article  Google Scholar 

  23. Ö. Pekcan, Y. Yılmaz, O. Okay, Chem. Phys. Lett. 229, 537 (1994).

    Article  Google Scholar 

  24. Ö. Pekcan, Y. Yılmaz, O. Okay, J. Appl. Polym. Sci. 61, 2279 (1996).

    Article  Google Scholar 

  25. O. Okay, Y. Yılmaz, D. Kaya, M. Keskinel, Ö. Pekcan, Polym. Bull. 43, 425 (1999).

    Article  Google Scholar 

  26. Ö. Pekcan, Y. Yılmaz, Prog. Colloid Polym. Sci. 102, 89 (1996).

    Google Scholar 

  27. Ö. Pekcan, Y. Yılmaz, J. Appl. Polym. Sci. 63, 1777 (1997).

    Article  Google Scholar 

  28. Ö. Pekcan, Y. Yılmaz, Ş. Ugur, Polym. Int. 44, 474 (1997).

    Article  Google Scholar 

  29. Y. Yılmaz, Ö. Pekcan, Polymer 39, 5351 (1998).

    Article  Google Scholar 

  30. O. Guney, Y. Yılmaz, Ö. Pekcan, Sens. Actuators B 85, 86 (2002).

    Article  Google Scholar 

  31. T. Oya, T. Enoki, A. Yu. Grosberg, S. Masamune, Y. Takeoka, K. Tanaka, G. Wang, Y. Yılmaz, T. Tanaka, Science 286, 1543 (1999).

    Article  Google Scholar 

  32. Y. Yılmaz, Phys. Rev. E 66, 052801 (2002).

    Article  Google Scholar 

  33. D. Kaya, Ö. Pekcan, Y. Yılmaz, Phys. Rev. E 69, 016117 (2004).

    Article  Google Scholar 

  34. M. Stickler, Makromol. Chem. 184, 2563 (1983).

    Article  Google Scholar 

  35. J.N. Cardenas, K.F. O’Driscoll, J. Polym. Sci.: Polym. Chem. Ed. 14, 883 (1976); 15, 1883; 2097 (1977).

    Article  Google Scholar 

  36. F.L. Martin, A.E. Hamielec, ACS Symp. Ser. 104, 43 (1979).

    MATH  Google Scholar 

  37. P.D. Armitage, S. Hill, A.F. Johnson, J. Mykytiuk, J.M.C. Turner, Polymer 29, 2221 (1988)

    Article  Google Scholar 

  38. K.E. Miller, E.L. Burch, F.D. Lewis, J.M. Torkelson, J. Polym. Sci., Part B: Polym. Phys. 32, 2625 (1994).

    Article  Google Scholar 

  39. Y. Yılmaz, A. Erzan, Ö. Pekcan, Eur. Phys. J. E 9, 135 (2002).

    Google Scholar 

  40. Y. Yılmaz, A. Erzan, Ö. Pekcan, Phys. Rev. E 58, 7487 (1998).

    Article  Google Scholar 

  41. B. Serrano, B. Levenfeld, J. Bravo, J. Baselga, Polym. Eng. Sci. 36, 175 (1996).

    Article  Google Scholar 

  42. Y. Tian, S. Zhu, A.E. Hamielec, D.B. Fulton, D.R. Eaton, Polymer 33, 384 (1992).

    Article  Google Scholar 

  43. F.R. Blackburn, C.Y. Wang, M.D. Ediger, J. Phys. Chem. 100, 18249 (1996).

    Article  Google Scholar 

  44. D. Long, F. Lequeux, Eur. Phys. J. E 4, 371 (2001).

    Article  Google Scholar 

  45. S. Merabia, D. Long, Eur. Phys. J. E 9, 196 (2002).

    Google Scholar 

  46. J. Berriot, H. Montes, F. Lequeux, D. Long, P.Sotta, Macromolecules 35, 9756 (2002).

    Article  Google Scholar 

  47. J. Berriot et al. , Europhys. Lett. 64, 50 (2003).

    Article  Google Scholar 

  48. E. Tuzel, M. Özmetin, Y. Yılmaz, Ö. Pekcan, Eur. Polym. J. 36, 727 (2000).

    Article  Google Scholar 

  49. D. Stauffer, Introduction to Percolation Theory (Taylor and Francis, London, 1985).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaşar Yılmaz.

Additional information

Received: 9 July 2004, Published online: 1 October 2004

PACS:

64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions - 64.70.Pf Glass transitions - 82.35.Jk Copolymers, phase transitions, structure

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yılmaz, Y., Kaya, D. & Pekcan, Ö. Can the glass transition in bulk polymers be modeled by percolation picture?. Eur. Phys. J. E 15, 19–25 (2004). https://doi.org/10.1140/epje/i2003-10156-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2003-10156-9

Keywords

Navigation