Skip to main content
Log in

Temperature range of the liquid–glass transition

  • Polymers
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

It has been shown that the currently used method for calculating the temperature range of δT g in the glass transition equation qτ g = δT g as the difference δT g = (T 12T 13) results in overestimated values, which is explained by the assumption of a constant activation energy of glass transition in deriving the calculation equation (T 12 and T 13 are the temperatures corresponding to the logarithmic viscosity values of logη = 12 and logη = 13). The methods for the evaluation of δT g using the Williams–Landel–Ferry equation and the model of delocalized atoms are considered, the results of which are in satisfactory agreement with the product qτ g (q is the cooling rate of the melt and τ g is the structural relaxation time at the glass transition temperature). The calculation of τ g for inorganic glasses and amorphous organic polymers is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Nemilov, Glass Phys. Chem. 39 (6), 609 (2013).

    Article  Google Scholar 

  2. G. M. Bartenev, Dokl. Akad. Nauk SSSR 76, 227 (1951).

    Google Scholar 

  3. D. S. Sanditov, M. V. Darmaev, and B. D. Sanditov, Phys. Solid State 57 (8), 1666 (2015).

    Article  ADS  Google Scholar 

  4. D. S. Sanditov, J. Exp. Theor. Phys. 115 (1), 115 (2012).

    Article  ADS  Google Scholar 

  5. MDL®SciGlass-7.8 (Institute of Theoretical Chemistry, Shrewsbury, United Kingdom, 2012).

  6. J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1970).

    Google Scholar 

  7. D. S. Sanditov, S. Sh. Sangadiev, and B. D. Sanditov, Glass Phys. Chem. 26 (2), 59 (2000).

    Google Scholar 

  8. V. A. Durov and M. I. Shakhparonov, Zh. Fiz. Khim. 53, 2456 (1979).

    Google Scholar 

  9. D. S. Sanditov, D. B. Dorzhiev, and Zh. P. Baldanov, Zh. Fiz. Khim. 47, 2990 (1973).

    Google Scholar 

  10. G. M. Bartenev and I. A. Luk’yanov, Zh. Fiz. Khim. 29, 2586 (1955).

    Google Scholar 

  11. G. M. Bartenev, Structure and Mechanical Properties of Inorganic Glasses (Stroiizdat, Moscow, 1966) [in Russian].

    Google Scholar 

  12. D. S. Sanditov and G. M. Bartenev, Physical Properties of Disordered Structures (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  13. M. V. Vol’kenshtein and O. B. Ptitsyn, Dokl. Akad. Nauk SSSR 103, 795 (1955).

    Google Scholar 

  14. Ya. I. Frenkel’, Introduction of the Theory of Metals (OGIZ, Leningrad, 1948) [in Russian].

    Google Scholar 

  15. M. L. Williams, R. F. Landel, and J. D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955).

    Article  Google Scholar 

  16. B. A. Bestul, Glastech. Ber. 32, 59 (1959).

    Google Scholar 

  17. F. Simon, Z. Anorg. Allg. Chem. 203, 219 (1931).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Sanditov.

Additional information

Original Russian Text © D.S. Sanditov, M.V. Darmaev, B.D. Sanditov, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 2, pp. 372–376.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanditov, D.S., Darmaev, M.V. & Sanditov, B.D. Temperature range of the liquid–glass transition. Phys. Solid State 58, 382–386 (2016). https://doi.org/10.1134/S1063783416020256

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416020256

Keywords

Navigation