Skip to main content
Log in

Study of electron scattering from \({{\mathrm {CH}}}_{{4}}^{+}\), \({{\mathrm {NH}}}_{{3}}^{+}\), \({\mathrm {H}}_{{2}}{\mathrm {O}}^{+}\), \({{\mathrm {NH}}}_{{4}}^{+}\) and \({\mathrm {H}}_{{3}}{\mathrm {O}}^{+}\) molecular ions with an analytic static potential approach

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A detailed study on electron impact elastic scattering from \({\mathrm {CH}}_{4}^{+}\), \({\mathrm {NH}}_{3}^{+}\), \(\mathrm {H}_{2}\mathrm {O}^{+}\), \({\mathrm {NH}}_{4}^{+}\) and \(\mathrm {H}_{3}\mathrm {O}^{+}\) molecular ions is reported for the first time by using an optical model potential method. The static potential of each ion is obtained analytically by representing the molecular ion with Gaussian orbital wave functions. Exchange and polarization potentials are added with the static potential to form an optical model potential. Utilizing this optical model potential, the Dirac equations are solved with the partial wave phase shift analysis method to obtain the scattering amplitudes. The differential cross section results are reported for 10–500 eV incident electron energy range. These results for the different molecular ions are compared with their corresponding neutral molecules.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. D.H. Sampson, H.L. Zhang, C.J. Fontes, Phys. Rep. 477, 111 (2009)

    Article  ADS  Google Scholar 

  2. K. Bartschat, M.J. Kushner, Proc. Natl. Acad. Sci. 113, 7026 (2016)

    Article  ADS  Google Scholar 

  3. B.A. Huber, C. Ristori, C. Guet, D. Küchler, W.R. Johnson, Phys. Rev. Lett. 73, 2301 (1994)

    Article  ADS  Google Scholar 

  4. C. Bélenger, P. Defrance, R. Friedlein, C. Guet, D. Jalabert, M. Maurel, C. Ristori, J.C. Rocco, B.A. Huber, J. Phys. B At. Mol. Opt. Phys. 29, 4443 (1996)

    Article  ADS  Google Scholar 

  5. I.D. Williams, B. Srigengan, J.B. Greenwood, W.R. Newell, A. Platzer, L. O’Hagan, Phys. Scr. T73, 119 (1997)

  6. J.T. Shepherd, A.S. Dickinson, J. Phys. B At. Mol. Opt. Phys. 32, 513 (1999)

    Article  ADS  Google Scholar 

  7. S. Micheau, Z. Chen, A.T. Le, J. Rauschenberger, M.F. Kling, C.D. Lin, Phys. Rev. Lett. 102, 073001 (2009)

    Article  ADS  Google Scholar 

  8. D. Mahato, L. Sharma, R. Srivastava, Int. J. Quantum Chem. (2021). https://doi.org/10.1002/qua.26815

  9. B.M. McLaughlin, C.J. Gillan, P.G. Burke, J.S. Dahler, Nucl. Inst. Methods Phys. Res. B 53, 518 (1991)

    Article  ADS  Google Scholar 

  10. Y.K. Kim, K.K. Irikura, M.A. Ali, J. Res. Natl. Inst. Stand. Technol. 105, 285 (2000)

    Article  Google Scholar 

  11. N.G. Adams, V. Poterya, L.M. Babcock, Mass Spectrom. Rev. 25, 798 (2006)

    Article  ADS  Google Scholar 

  12. N. Pop, Z. Mezei, O. Motapon, S. Niyonzima, K. Chakrabarti, F. Colboc, R. Boată, M.D.E. Epée, I.F. Schneider, AIP Conf. Proc. 1796, 020014 (2017)

    Article  Google Scholar 

  13. D.A. Little, K. Chakrabarti, J.Z. Mezei, I.F. Schneider, J. Tennyson, Phys. Rev. A 90, 052705 (2014)

    Article  ADS  Google Scholar 

  14. M.C. Zammit, D.V. Fursa, I. Bray, Phys. Rev. A 90, 022711 (2014)

    Article  ADS  Google Scholar 

  15. L.H. Scarlett, M.C. Zammit, D.V. Fursa, I. Bray, Phys. Rev. A 96, 022706 (2017)

    Article  ADS  Google Scholar 

  16. A. Faure, V. Kokoouline, C.H. Greene, J. Tennyson, J. Phys. B At. Mol. Opt. Phys. 39, 4261 (2006)

    Article  ADS  Google Scholar 

  17. Z.J. Mezei, K. Chakrabarti, M.D. Epée Epée, O. Motapon, C.H. Yuen, M.A. Ayouz, N. Douguet, S. Fonseca Dos Santos, V. Kokoouline, I.F. Schneider, ACS Earth Sp. Chem. 3, 2376 (2019)

    Article  Google Scholar 

  18. International Atomic Energy Agency, Atomic and Plasma–Material Interaction Data for Fusion, Atomic and Plasma–Material Interaction Data for Fusion No. 16, IAEA, Vienna (2014)

  19. M. Larsson, W.D. Geppert, G. Nyman, Rep. Progr. Phys. 75, 066901 (2012)

    Article  ADS  Google Scholar 

  20. R.K. Janev, D. Reiter, Phys. Plasmas 9, 4071 (2002)

    Article  ADS  Google Scholar 

  21. R.D. Thomas, Mass Spectrom. Rev. 27, 485 (2008)

    Article  ADS  Google Scholar 

  22. R. Perillo, R. Chandra, G.R.A. Akkermans, W.A.J. Vijvers, W.A.A.D. Graef, I.G.J. Classen, J. van Dijk, M.R. de Baar, Plasma Phys. Control Fus. 60, 105004 (2018)

    Article  ADS  Google Scholar 

  23. S. Rednyk, Š Roučka, A. Kovalenko, T.D. Tran, P. Dohnal, R. Plašil, J. Glosík, Astron. Astrophys. 625, A74 (2019)

    Article  ADS  Google Scholar 

  24. A. Beth, K. Altwegg, H. Balsiger, J.-J. Berthelier, U. Calmonte, M.R. Combi, J. De Keyser, F. Dhooghe, B. Fiethe, S.A. Fuselier, M. Galand, S. Gasc, T.I. Gombosi, K.C. Hansen, M. Hässig, K.L. Héritier, E. Kopp, L. Le Roy, K.E. Mandt, S. Peroy, M. Rubin, T. Sémon, C.-Y. Tzou, E. Vigren, Mon. Not. R. Astron. Soc. 462, S562 (2017)

    Google Scholar 

  25. Cooling Water, https://www.iter.org/mach/Coolingwater

  26. P.A. Wehinger, S. Wyckoee, G.H. Herbig, G. Herzberg, H. Lew, Astrophys. J. 190, L43 (1974)

    Article  ADS  Google Scholar 

  27. A. Wootten, F. Boulanger, M. Bogey, F. Combes, P.J. Encrenaz, M. Gerin, L. Ziurys, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 303, 543 (1981)

    Google Scholar 

  28. V. Laporta, K. Chakrabarti, R. Celiberto, R.K. Janev, J.Z. Mezei, S. Niyonzima, J. Tennyson, I.F. Schneider, Plasma Phys. Control. Fusion 59(2017)

  29. A. Abdoulanziz, C. Argentin, V. Laporta, K. Chakrabarti, A. Bultel, J. Tennyson, I.F. Schneider, J.Z. Mezei, J. Appl. Phys. 129 (2021)

  30. R.R. Lucchese, V. McKoy, Phys. Rev. A 21, 112 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  31. R.R. Lucchese, V. McKoy, Phys. Scr. 21, 366 (1980)

    Article  ADS  Google Scholar 

  32. R.R. Lucchese, V. McKoy, Phys. Rev. A 24, 770 (1981)

    Article  ADS  Google Scholar 

  33. D. Mahato, L. Sharma, A.D. Stauffer, R. Srivastava, Eur. Phys. J. D 73, 189 (2019)

    Article  ADS  Google Scholar 

  34. D. Mahato, L. Sharma, R. Srivastava, J. Phys. B At. Mol. Opt. Phys. 53, 225204 (2020)

  35. D. Mahato, L. Sharma, R. Srivastava, J. Electron Spectros. Relat. Phenomena 252, 147118 (2021)

    Article  Google Scholar 

  36. D. Mahato, L. Sharma, R. Srivastava, Atoms 8, 83 (2020)

    Article  ADS  Google Scholar 

  37. F. Salvat, Phys. Rev. A 68, 012708 (2003)

    Article  ADS  Google Scholar 

  38. F. Salvat, A. Jablonski, C.J. Powell, Comput. Phys. Commun. 165, 157 (2005)

    Article  ADS  Google Scholar 

  39. L. Sharma, A. Surzhykov, R. Srivastava, S. Fritzsche, Phys. Rev. A 83, 062701 (2011)

    Article  ADS  Google Scholar 

  40. T. Das, A.D. Stauffer, R. Srivastava, Eur. Phys. J. D 68, 102 (2014)

    Article  ADS  Google Scholar 

  41. I. Tóth, R.I. Campeanu, V. Chiş, L. Nagy, Phys. Lett. A 360, 131 (2006)

    Article  ADS  Google Scholar 

  42. I. Tóth, R.I. Campeanu, L. Nagy, Eur. Phys. J. D 69, 2 (2015)

    Article  ADS  Google Scholar 

  43. J.B. Furness, I.E. McCarthy, J. Phys. B At. Mol. Phys. 6, 2280 (1973)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors, DM is thankful to the Ministry of Human Resources and Development (MHRD), Govt. of India, and RS and LS are thankful to SERB-DST, New Delhi, Govt. of India for the sanction of research Grant No. CRG/2020/005597.

Author information

Authors and Affiliations

Authors

Contributions

DM contributed to formal analysis, investigation, methodology, software and writing—original draft. LS contributed to formal analysis, funding acquisition, methodology, supervision and writing—review and editing. RS initiated the original research problem and contributed to formal analysis, funding acquisition, methodology, supervision and writing—review and editing.

Corresponding author

Correspondence to Rajesh Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahato, D., Sharma, L. & Srivastava, R. Study of electron scattering from \({{\mathrm {CH}}}_{{4}}^{+}\), \({{\mathrm {NH}}}_{{3}}^{+}\), \({\mathrm {H}}_{{2}}{\mathrm {O}}^{+}\), \({{\mathrm {NH}}}_{{4}}^{+}\) and \({\mathrm {H}}_{{3}}{\mathrm {O}}^{+}\) molecular ions with an analytic static potential approach. Eur. Phys. J. D 75, 289 (2021). https://doi.org/10.1140/epjd/s10053-021-00285-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00285-3

Navigation