Skip to main content

Advertisement

Log in

Low-energy electron elastic scattering by \(\hbox {SF}_6\)—modified effective range analysis

  • Regular Article - Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Cross sections for electron elastic scattering on sulfur hexafluoride (\(\hbox {SF}_6\)) are analyzed at ultra-low energies (below 1eV) using the semi-analytical approach to the modified effective range theory (MERT). It is shown that currently available experimental elastic cross sections are consistent with each other within the frame of this theoretical approach in the energy range 0.2–1 eV, i.e., when the coupling of elastic and electron attachment channels is relatively low. The MERT analysis also indicates the presence of the Ramsauer–Townsend effect in p-wave around 0.5 eV. To describe cross sections at energies lower than 0.2 eV, where the electron attachment plays a significant role, MERT is combined with the simple coupled model (SCM). The partial wave phase shifts extrapolated towards the zero energy suggest a virtual state scattering. The comparison between MERT and SCM results allows estimating the importance of the channel coupling effect at near-zero energies.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data in a data repository. [Authors comment: All relevant data regarding this work is presented in the paper itself. The tabulated cross sections are available under request.]

References

  1. L.G. Christophorou, J.K. Olthoff & D.S. Green, Gases for Electrical Insulation and Arc Interruption: Possible Present and Future Alternatives to Pure \(\text{SF}_6\), National Institute of Standards and Technology (NIST), NIST Technical Note, p. 1425 (1997)

  2. L.G. Christophorou, J.K. Olthoff, J. Phys. Chem. Data 29, 3 (2000)

    Google Scholar 

  3. L.G. Christophorou, J.K. Olthoff, Int. J. Mass Spectrom. 205, 27 (2001)

    Article  Google Scholar 

  4. G.P. Karwasz, A. Zecca, R.S. Brusa, La Rivista del Nuovo Cimento 24: 4 (2001)

  5. K. Rohr, J. Phys. B: At. Mol. Phys. 12, L185 (1979)

    Article  ADS  Google Scholar 

  6. J. Randell, D. Field, S.L. Lunt, G. Mrotzek, J.P. Ziesel, J. Phys. B: At. Mol. Phys. 25, 2899 (1992)

    Article  ADS  Google Scholar 

  7. I.I. Fabrikant, H. Hotop, M. Allan, Phys. Rev. A 71, 022712 (2005)

    Article  ADS  Google Scholar 

  8. D. Field, N.C. Jones, J.P. Ziesel, Phys. Rev. A 69, 052716 (2004)

    Article  ADS  Google Scholar 

  9. R.E. Kennerly, R.A. Bonham, M. McMillan, J. Chem. Phys. 70, 2039 (1979)

    Article  ADS  Google Scholar 

  10. J. Ferch, W. Raith, K. Schroder, J. Phys. B: At. Mol. Phys. 15, L175 (1982)

    Article  ADS  Google Scholar 

  11. S. Trajmar, D.F. Register, A. Chutjian, Phys. Rep. 97, 219 (1983)

    Article  ADS  Google Scholar 

  12. H.-X. Wan, J.H. Moore, J.K. Olthoff, R.J. Van Brunt, Plasma Chem. Plasma Process. 19, 1 (1993)

    Article  Google Scholar 

  13. C. Makochekanwa, M. Kimura, O. Sueoka, Phys. Rev. A 70, 022702 (2004)

    Article  ADS  Google Scholar 

  14. J.L. Dehmer, J. Siegel, D. Dill, J. Chem. Phys 69, 5205 (1978)

    Article  ADS  Google Scholar 

  15. C. Winstead, V. McKoy, J. Chem. Phys. 121, 5828 (2004)

    Article  ADS  Google Scholar 

  16. F.A. Gianturco, R.R. Lucchese, N. Sanna, J. Chem. Phys. 102, 5743 (1995)

    Article  ADS  Google Scholar 

  17. F.A. Gianturco, R.R. Lucchese, J. Chem. Phys. 114, 3429 (2001)

    Article  ADS  Google Scholar 

  18. B. Goswami, B. Antony, RSC Adv. 4, 30953 (2014)

    Article  ADS  Google Scholar 

  19. J.P. Ziesel, N.C. Jones, D. Field, L.B. Madsen, Phys. Rev. Lett. 90, 083201 (2003)

    Article  ADS  Google Scholar 

  20. Z. Idziaszek, G.P. Karwasz, Phys. Rev. A 73, 064701 (2006)

    Article  ADS  Google Scholar 

  21. T.F. O’Malley, L. Spruch, L. Rosenberg, J. Math. Phys. 2, 491 (1961)

    Article  ADS  Google Scholar 

  22. K. Fedus, G.P. Karwasz, Z. Idziaszek, Phys. Rev. A 88, 012704 (2013)

    Article  ADS  Google Scholar 

  23. K. Fedus, G. Karwasz, Eur. Phys. J. D 68, 93 (2014)

  24. K. Fedus, G. Karwasz, Eur. Phys. J. D 75, 76 (2021)

    Article  ADS  Google Scholar 

  25. S.J. Buckman, J. Mitroy, J. Phys. B: At. Mol. Opt. Phys. 22, 1365 (1989)

  26. M.K. Ali, P.A. Fraser, J. Phys. B: At. Mol. Phys. 10, 3091 (1977)

    Article  ADS  Google Scholar 

  27. M. Gussoni, R. Rui, G. Zerbi, J. Mol. Struct. 447, 163 (1998)

    Article  ADS  Google Scholar 

  28. Experimental values of Polarizability. Available online: https://cccbdb.nist.gov/xp1x.asp?prop=9 (accessed on 28 November 2021)

  29. C.M. Evans, R. Reininger, G.L. Findley, Chem. Phys. Lett. 297, 127 (1998)

    Article  ADS  Google Scholar 

  30. L.C. Pitchford, L.L. Alves, K. Bartschat, S.F. Biagi, M.C. Bordage, A.V. Phelps, C.M. Ferreira, G.J.M. Hagelaar, W.L. Morgan, S. Pancheshnyi, V. Puech, A. Stauffer, O. Zatsarinny, J. Phys. D: Appl. Phys. 46, 334001 (2013)

    Article  Google Scholar 

  31. V.A. Phelps, R.J. Van Brunt, J. Appl. Phys. 64, 4269 (1988)

    Article  ADS  Google Scholar 

  32. Cross sections retrieved from the EEDF software package developed by Prof. A.P. Napartovich and Drs. N.A. Dyatko, I.V. Kochetov, A.G. Sukharev from The State Science Center Troitsk Institute for Innovation and Fusion Research, Russia. Data available online in LxCat database: www.lxcat.net/TRINITI (accessed on 04 December 2021)

  33. Fortran program, MAGBOLTZ 8.9, S.F. Biagi. Data available online in LxCat database: www.lxcat.net/Biagi (accessed on 04 December 2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Fedus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedus, K. Low-energy electron elastic scattering by \(\hbox {SF}_6\)—modified effective range analysis. Eur. Phys. J. D 76, 55 (2022). https://doi.org/10.1140/epjd/s10053-022-00383-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00383-w

Navigation