Skip to main content
Log in

Multiple dissipative soliton Yb-doped fiber laser without an additional filter

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A tunable triple dissipative solitons (DSs) mode-locked laser without a spectral filter in the all-normal dispersion (ANDi) system is reported and demonstrated. The nonlinear polarization evolution (NPE) acted as an artificial bandwidth filter for formatting the pulses with multiple DSs hysteresis phenomenon and adjusting the output wavelength with tuning. The spectral range can be adjusted from 1036.24 to 1043.44 nm, and the temporal distances between adjacent pulses are all equal to 33.9 ns. With the pump power of 560 mW, the highest output energy of the triple DSs is 48.8 nJ at a repetition rate of 2.541 MHz. Besides, the mode-locking states were stabilized during the wavelength tuning process.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Source data for figures are all provided in the corresponding description of this paper.]

References

  1. N. Akhmediev, J.M. Soto-crespo, M. Grapinet, P. Grelu, Opt. Fiber Technol. 11, 209 (2005)

    Article  ADS  Google Scholar 

  2. A. Komarov, H. Leblond, F. Sanchez, in Proceedings of ICTON Mediterranean Winter Conference, Sousse (2007), p. 1

  3. F. Leo, L. Gelens, P. Emplit, M. Haelterman, S. Coen, Opt. Express 21, 9180 (2013)

    Article  ADS  Google Scholar 

  4. Q. Ning, H. Liu, X. Zheng, W. Yu, A. Luo, X. Huang, Z. Luo, W. Xu, S. Xu, Z. Yang, Opt. Express 22, 11900 (2014)

    Article  ADS  Google Scholar 

  5. J. Peng, S. Boscolo, Z. Zhao, H. Zeng, In Proceedings of 21st International Conference on Transparent Optical Networks (Angers, 2019), p. 1

  6. A. Komarov, K. Komarov, H. Leblond, F. Sanchez, In the Proceedings of 9th International Conference on Transparent Optical Networks (Rome, 2007), p. 217

  7. L. Zhao, D. Tang, T. Cheng, H. Tam, C. Lu, Opt. Lett. 32(11), 1581 (2007)

    Article  ADS  Google Scholar 

  8. W. Lin, S. Wang, Q. Zhao, W. Chen, J. Gan, S. Xu, Z. Yang, Opt. Express 23(22), 28761 (2015)

    Article  ADS  Google Scholar 

  9. G. Martel, C. Chedot, V. Reglier, A. Hideur, B. Ortaç, P. Grelu, Opt. Lett. 32(4), 343 (2007)

    Article  ADS  Google Scholar 

  10. W.H. Renninger, A. Chong, F.W. Wise, J. Opt. Soc. Am. B Opt. Phys. 27(10), 1978 (2010)

    Article  ADS  Google Scholar 

  11. L.Q. Zhang, Z. Zhuo, Z.Y. Pan, Y.Z. Wang, J.W. Zhao, J.X. Wang, Laser Phys. Lett. 10, 105104 (2013)

    Article  ADS  Google Scholar 

  12. J. Szczepanek, T.M. Kardas, C. Radzewicz, Y. Stepanenko, Opt. Lett. 42(3), 575 (2017)

    Article  ADS  Google Scholar 

  13. M. Schultz, H. Karow, D. Wandt, U. Morgner, D. Kracht, Opt. Commun. 282(13), 2567 (2009)

    Article  ADS  Google Scholar 

  14. D. Tang, L. Zhao, B. Zhao, A. Liu, Phys. Rev. A 72(4), 43816 (2005)

    Article  ADS  Google Scholar 

  15. A. Chong, W.H. Renninger, F.W. Wise, Opt. Lett. 32(16), 2408 (2007)

    Article  ADS  Google Scholar 

  16. J.W. Lou, M. Currie, F.K. Fatemi, Opt. Express 15(8), 4960 (2007)

    Article  ADS  Google Scholar 

  17. M.A. Abdelalim, Y. Logvin, D.A. Khalil, H. Anis, Opt. Express 17(15), 13128 (2009)

    Article  ADS  Google Scholar 

  18. C. Bao, X. Xiao, C. Yang, Opt. Lett. 38(11), 1875 (2013)

    Article  ADS  Google Scholar 

  19. J. Peng, L. Zhan, S. Luo, Q.S. Shen, IEEE Photonics Technol. Lett. 25(10), 948 (2013)

  20. J. Peng, H. Zeng, Phys. Rev. Appl. 12, 034052 (2019)

    Article  ADS  Google Scholar 

  21. X. Zhu, C. Wang, S. Liu, G. Zhang, IEEE Photonics Technol. Lett. 24(9), 754 (2012)

    Article  ADS  Google Scholar 

  22. X. Zhu, C. Bu, C. Wang, R. Xu, G. Zhang, IEEE Photonics Technol. Lett. 27(14), 1503 (2015)

    Article  ADS  Google Scholar 

  23. P.V. Mamyshev, L.F. Mollenauer, Opt. Lett. 19(24), 2083 (1994)

    Article  ADS  Google Scholar 

  24. K. Tamura, H.A. Haus, E.P. Ippen, L.E. Nelson, Opt. Lett. 18(13), 1080 (1993)

    Article  ADS  Google Scholar 

  25. F.Ö. Ilday, J.R. Buckley, W.G. Clark, F.W. Wise, Phys. Rev. Lett. 92, 213902 (2004)

    Article  ADS  Google Scholar 

  26. L.M. Zhao, D.Y. Tang, Appl. Phys. B Lasers Opt. 83(4), 553 (2006)

    Article  ADS  Google Scholar 

  27. X. Zhang, F. Li, K. Nakkeeran, J. Yuan, Z. Kang, J. Nathan Kutz, P.K.A. Wai, IEEE J. Sel. Top. Quantum Electron. 24(3), 1 (2018)

    Google Scholar 

  28. K. Özgören, F.Ö. Ilday, Opt. Lett. 35(8), 1296 (2010)

    Article  ADS  Google Scholar 

  29. J. Szczepanek, T.M. Kardas, C. Radzewicz, Y. Stepanenko, Opt Lett. 42(3), 575 (2017)

    Article  ADS  Google Scholar 

  30. P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B.N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, Q. Bao, A.C.S. Appl, Mater. Interfaces 9(14), 12759 (2017)

    Article  Google Scholar 

  31. Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, D. Fan, Adv. Opt. Mater. 6(4), 1701166 (2018)

    Article  Google Scholar 

  32. J. He, L. Tao, H. Zhang, B. Zhou, J. Li, Nanoscale 11, 2577 (2019)

    Article  Google Scholar 

  33. C. Ma, C. Wang, B. Gao, J. Adams, G. Wu, H. Zhang, Appl. Phys. Rev. 6, 041304 (2019)

    Article  ADS  Google Scholar 

  34. T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, H. Zhang, Photonics Res. 8(1), 78 (2020)

    Article  Google Scholar 

  35. Z. Luo, Y. Huang, J. Wang, H. Cheng, Z. Cai, C. Ye, I.E.E.E. Photonics, Technol. Lett. 24(17), 1539 (2012)

    Article  Google Scholar 

  36. Z. Zhang, G. Dai, IEEE Photonics J. 3(6), 1023 (2011)

    Article  ADS  Google Scholar 

  37. Y. Pan, J. Miao, W. Liu, X. Huang, Y. Wang, Laser Phys. Lett. 11(9), 95105 (2014)

    Article  Google Scholar 

  38. L. Li, Z. Wang, D. Wang, F. Yang, IEEE Photonics Technol. Lett. 31(8), 647 (2019)

    Article  ADS  Google Scholar 

  39. A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, G. Martel, Opt. Fiber Technol. 14, 262 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the National Natural Science Foundation of China (61975075), The Six Talent Peaks Project in Jiangsu Province (No. KTHY-052), Basic Science Research Project of Nantong (Contract No. JC2020139), the Fundamental Research Funds for the Central Universities (No. 021314380 095), and the Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China (No. KJS1858).

Author information

Authors and Affiliations

Authors

Contributions

JC and XZ conceptualized the experiment and analyzed the results. DS, HZ, LZ, and YS undertook the experiment, while YJ and ZH analyzed the results. JC, XZ and GZ prepared and edited the final manuscript.

Corresponding author

Correspondence to Xiaojun Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Sun, D., Zhuang, H. et al. Multiple dissipative soliton Yb-doped fiber laser without an additional filter. Eur. Phys. J. D 75, 233 (2021). https://doi.org/10.1140/epjd/s10053-021-00241-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00241-1

Navigation