Skip to main content
Log in

Improve the plasmonic optical tunability of Au nanorod by Pt coating: the application in refractive index sensing

  • Regular Article - Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Plasmonic light absorption properties of bimetallic Au–Pt core–shell nanorod are investigated theoretically. The plasmonic absorption intensity comparison between the longitudinal peak corresponding to outer Pt surface (denoted as band \(\hbox {Pt}_{\mathrm {L}})\) and the transverse peak corresponding to Au–Pt interface (denoted as band \(\hbox {Au}_{\mathrm {T}})\) is sensitive to the environmental dielectric constant. By increasing the environmental dielectric constant, the band \(\hbox {Pt}_{\mathrm {L}}\) fades down, whereas the band \(\hbox {Au}_{\mathrm {T}}\) gets intense. So the absorption discrepancy between \(\hbox {Pt}_{\mathrm {L}}\) and \(\hbox {Au}_{\mathrm {T}}\) bands could be greatly enhanced by increasing the environmental dielectric constant, which is more sensitive to the environmental refractive index than single plasmonic band. This refractive index sensing based on two bands’ absorption discrepancy could be further improved by increasing the Pt coating thickness or the aspect ratio of inner Au nanorod. The refractive index sensing based on red shift of the longitudinal peak corresponding to Au–Pt interface is also competitive, which can also be improved by increasing the Pt coating thickness or aspect ratio of inner Au nanorod. A mechanism based on media polarization-related electric field discontinuity and distribution of surface charge density was investigated to illuminate the absorption intensity-dependent refractive index sensing.

Graphic abstract

In this Au–Pt core–shell nanorod, the \(\hbox {Pt}_{\mathrm {L}}\) band fades down, whereas the \(\hbox {Au}_{\mathrm {T}}\) band gets intense as the environmental dielectric constant is increased. So the absorption discrepancy between \(\hbox {Pt}_{\mathrm {L}}\) and \(\hbox {Au}_{\mathrm {T}}\) bands could be greatly enhanced by increasing the environmental dielectric constant, which is more sensitive to the environmental refractive index than single plasmonic band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical paper. The study and calculation are based on analytic expressions of quasistatic theory. Therefore, there is no data.]

References

  1. J. Zhu, F. Zhang, J.J. Li, J.W. Zhao, The effect of nonhomogeneous silver coating on the plasmonic absorption of Au–Ag core–shell nanorod. Gold Bull. 47, 47–55 (2014)

    Article  Google Scholar 

  2. Y.H. Lee, H. Chen, Q. Xu, J. Wang, Refractive index sensitivities of noble metal nanocrystals: the effects of multipolar plasmon resonances and the metal type. J. Phys. Chem. C 115, 7997–8004 (2011)

    Article  Google Scholar 

  3. P. Pandey, S. Kunwar, J. Lee, Solid state dewetting of Ag/Pt bilayers for the stronger localized surface plasmon resonance (LSPR) properties: the dynamic control of surface morphology and elemental composition of AgPt and Pt nanostructures by the auxiliary Ag layer. J. Alloy. Compd. 813, 152193 (2020)

    Article  Google Scholar 

  4. C. Langhammer, B. Kasemo, I. Zorić, Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios. J. Chem. Phys. 126, 194702 (2007)

    Article  ADS  Google Scholar 

  5. M. Safdar, M. Ozaslan, R.A. Khailany, S. Latif, Y. Junejo, M. Saeed, M.S. Al-Attar, B.O. Kanabe, Synthesis, characterization and applications of a novel platinum-based nanoparticles: catalytic, antibacterial and cytotoxic studies. J. Inorg. Organomet. P 30, 2430–2439 (2020)

    Article  Google Scholar 

  6. E. Petryayeva, U.J. Krull, Localized surface plasmon resonance: nanostructures, bioassays and biosensing: a review. Anal. Chim. Acta 706, 8–24 (2011)

    Article  Google Scholar 

  7. M.T. Yaraki, Y.N. Tan, Metal nanoparticles-enhanced biosensors: synthesis, design and applications in fluorescence enhancement and surface-enhanced Raman scattering. Chem. Asian J. 15, 1–30 (2020)

    Article  Google Scholar 

  8. M. Ha, J. Kim, M. You, Q. Li, C. Fan, J. Nam, Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures. Chem. Rev. 119, 12208–12278 (2019)

    Article  Google Scholar 

  9. J. Zhu, Y.J. Ren, Negative curvature dependent plasmonic coupling and local field enhancement of crescent silver nanostructure. J. Nanopart. Res. 14, 1326 (2012)

    Article  ADS  Google Scholar 

  10. Y. Yu, S. Chang, C. Lee, C.R.C. Wang, Gold nanorods: electrochemical synthesis and optical properties. J. Phys. Chem. B 101, 6661 (1997)

    Article  Google Scholar 

  11. Z. Wu, Y. Liang, L. Cao, Q. Guo, S. Jiang, F. Mao, J. Sheng, Q. Xiao, High-yield synthesis of monodisperse gold nanorods with a tunable plasmon wavelength using 3-aminophenol as the reducing agent. Nanoscale 11, 22890 (2019)

    Article  Google Scholar 

  12. T. Bai, J. Sun, R. Che, L. Xu, C. Yin, Z. Guo, N. Gu, Controllable preparation of core–shell Au–Ag nanoshuttles with improved refractive index sensitivity and SERS activity. ACS Appl. Mater. Inter. 6, 3331–3340 (2014)

    Article  Google Scholar 

  13. J. Katyal, Comparison of localised surface plasmon resonance and refractive index sensitivity for metallic nanostructures. Mater. Today: Proc. 18, 613–622 (2019)

    Google Scholar 

  14. S. Rodal-Cedeira, V. Montes-García, L. Polavarapu, D.M. Solís, H. Heidari, A. La Porta, M. Angiola, A. Martucci, J.M. Taboada, F. Obelleiro, S. Bals, J. Pérez-Juste, I. Pastoriza-Santos, Plasmonic Au@Pd nanorods with boosted refractive index susceptibility and SERS efficiency: a multifunctional platform for hydrogen sensing and monitoring of catalytic reactions. Chem. Mater. 28, 9169–9180 (2016)

    Article  Google Scholar 

  15. F. Sun, C. Du, T. Fu, Y. Chen, L. Sun, R. Zhang, D. Shi, Optimal aspect ratio and excitation spectral region of individual Au Ag1 alloy nanobars for plasmonic sensing. Phys. Lett. A 384, 126785 (2020)

    Article  Google Scholar 

  16. C. Martín-Sánchez, G. González-Rubio, P. Mulvaney, A. Guerrero-Martínez, M. Luis, Monodisperse gold nanorods for high-pressure refractive index sensing. J. Phys. Chem. Lett. 10, 1587–1593 (2019)

    Article  Google Scholar 

  17. R.M. Pallares, T. Stilson, P. Choo, J. Hu, T.W. Odom, Using good’s buffers to control the anisotropic structure and optical properties of spiky gold nanoparticles for refractive index sensing. ACS Appl. Nano Mater. 2, 5266–5271 (2019)

    Article  Google Scholar 

  18. S.B. Malani, P. Viswanath, Impact of ordering of gold nanohole arrays on refractive index sensing. J. Opt. Soc. Am. B 35, 2501–2508 (2018)

    Article  ADS  Google Scholar 

  19. S. Peng, C.L. Du, D.N. Shi, Geometry and near-field coupling effects on the refractive-index sensitivities of individual Ag nanoparticle sensors. Appl. Phys. A 123, 672 (2017)

    Article  ADS  Google Scholar 

  20. C.R. Yonzon, D.A. Stuart, X.Y. Zhang, A.D. McFarland, C.L. Haynes, R.P. Van Duyne, Towards advanced chemical and biological nanosensors: an overview. Talanta 67, 438–448 (2005)

    Article  Google Scholar 

  21. H.J. Chen, L. Shao, K.C. Woo, T. Ming, H.Q. Lin, J.F. Wang, Shape-dependent refractive index sensitivities of gold nanocrystals with the same plasmon resonance wavelength. J. Phys. Chem. C 113, 17691–17697 (2009)

    Article  Google Scholar 

  22. V. Khoshdel, M. Shokooh-Saremi, Plasmonic nano bow-tie arrays with enhanced LSPR refractive index sensing. Micro Nano Lett. 14, 566–571 (2019)

    Article  Google Scholar 

  23. J. Zhu, S.M. Zhao, Plasmonic refractive index sensitivity of ellipsoidal Al nanoshell: tuning the wavelength position and width of spectral dip. Sens. Actuator B-Chem. 232, 469–476 (2016)

    Article  Google Scholar 

  24. A. Farnood, M. Ranjbar, H. Salamati, Localized surface plasmon resonance (LSPR) detection of hydrogen gas by Pd2\(+\)/Au core/shell like colloidal nanoparticles. Int. J. Hydrogen Energy 45, 1158–1169 (2020)

    Article  Google Scholar 

  25. B.J. Hui, P.V. Tsalu, W.H. Ji, Shape effect on the refractive index sensitivity at localized surface plasmon resonance inflection points of single gold nanocubes with vertices. Sci. Rep. 9, 13635 (2019)

    Article  ADS  Google Scholar 

  26. J. Zhu, X. Li, J.J. Li, J.W. Zhao, Enlarge the biologic coating-induced absorbance enhancement of Au–Ag bimetallic nanoshells by tuning the metal composition. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 189, 571–577 (2018)

    Article  ADS  Google Scholar 

  27. J. Zhu, J.J. Li, J.W. Zhao, Tuning the plasmon band number of aluminum nanorod within the ultraviolet–visible region by gold coating. Phys. Plasmas 21, 112108 (2014)

    Article  ADS  Google Scholar 

  28. J. Zhu, F. Zhang, J.J. Li, J.W. Zhao, Optimization of the refractive index plasmonic sensing of gold nanorods by non-uniform silver coating. Sens. Actuator B-Chem. 183, 556–564 (2013)

    Article  Google Scholar 

  29. K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, P. Van Dorpe, Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements. Nano Lett. 12, 1655–1659 (2012)

    Article  ADS  Google Scholar 

  30. J. Zhu, Y.J. Ren, S.M. Zhao, Refractive index sensitivity of gold double concentric nanoshells: tuning the intensity discrepancy of two-band plasmonic absorption. Sens. Actuator B-Chem. 161, 1129–1134 (2012)

    Article  Google Scholar 

  31. J. Perenboom, P. Wyder, F. Meier, Electronic properties of metallic small particles. Phys. Rep. 78, 173–292 (1981)

    Article  ADS  Google Scholar 

  32. M.Z. Liu, P. Guyot-Sionnest, Synthesis and optical characterization of Au/Ag core/shell nanorods. Phys. Chem. B 108, 5882–5888 (2004)

    Article  Google Scholar 

  33. M.Z. Liu, P. Guyot-Sionnest, Preparation and optical properties of silver chalcogenide coated gold nanorods. J. Mater. Chem. 16, 3942–3945 (2006)

    Article  Google Scholar 

  34. C.C. Chang, C.P. Chen, C.Y. Chen, C.W. Lin, DNA base-stacking assay utilizing catalytic hairpin assembly-induced gold nanoparticle aggregation for colorimetric protein sensing. Chem. Commun. 52, 4167–4170 (2016)

    Article  Google Scholar 

  35. S. Palanisamy, X. Zhang, T. He, Fast, sensitive and selective colorimetric gold bioassay for dopamine detection. J. Mater. Chem. B 3, 6019–6025 (2015)

    Article  Google Scholar 

  36. S. Zheng, D. Li, E.K. Fodjo, W. Deng, Colorimetric/fluorescent/SERS triple-channel sensing of Cu2\(+\) in real systems based on chelation-triggered self-aggregation. Chem. Eng. J. 399, 125840 (2020)

    Article  Google Scholar 

  37. F. Tam, C. Moran, N. Halas, Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment. J. Phys. Chem. B 108, 17290–17294 (2004)

    Article  Google Scholar 

  38. C. Deeb, X. Zhou, D. Gérard, A. Bouhelier, P.K. Jain, J. Plain, O. Soppera, P. Royer, R. Bachelot, Off-resonant optical excitation of gold nanorods: nanoscale imprint of polarization surface charge distribution. J. Phys. Chem. Lett. 2, 7–11 (2010)

    Article  Google Scholar 

  39. K.M. Mayer, J.H. Hafner, Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828–3857 (2011)

    Article  Google Scholar 

  40. H. Wang, D.W. Brandl, F. Le, P. Nordlander, N.J. Halas, Nanorice: a hybrid plasmonic nanostructure. Nano Lett. 6, 827–832 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11774283

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhu or Jun-wu Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Meng, Ln., Weng, Gj. et al. Improve the plasmonic optical tunability of Au nanorod by Pt coating: the application in refractive index sensing. Eur. Phys. J. D 75, 192 (2021). https://doi.org/10.1140/epjd/s10053-021-00195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00195-4

Navigation