Skip to main content
Log in

Geometry and near-field coupling effects on the refractive-index sensitivities of individual Ag nanoparticle sensors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The refractive-index sensitivities of sensors of individual Ag nanoparticles (including nanodisks, nanocubes, and nanoprisms) and nanoparticle clusters are investigated numerically and analytically. It is demonstrated that the refractive-index sensitivities are a nonlinear function of the peak positions of localized surface plasmon resonances (LSPRs) with fixed surrounding mediums and metal materials at optical wavelengths. Moreover, this nonlinear function is independent of Ag nanoparticle geometries and near-field couplings between components within nanoparticle clusters. In addition, the discrepancies between our results and those of literatures are also discussed. The present work facilitates choosing appropriate peak positions of LSPRs for plasmonic sensing and detections by only analytically calculating with an equation under LSPR condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Book  Google Scholar 

  2. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  3. T.R. Jensen, M.L. Duval, K.L. Kelly, A.A. Lazarides, G.C. Schatz, R.P. Van Duyne, J. Phys. Chem. B 103, 9846–9853 (1999)

    Article  Google Scholar 

  4. A.J. Haes, R.P. Van Duyne, Am. Chem. Soc. 124, 10596–10604 (2002)

    Article  Google Scholar 

  5. M.M. Miller, A.A. Lazarides, J. Phys. Chem. B 109, 21556–21565 (2005)

    Article  Google Scholar 

  6. M.M. Miller, A.A. Lazarides, J. Opt. A 8, S239-S249 (2006)

    Article  Google Scholar 

  7. D.E. Charles, D. Aherne, M. Gara, D.M. Ledwith, Y.K. Gun’ko, J.M. Kelly, W.J. Blau, M.E. Brennan-Fournet, ACS Nano. 4, 55–64 (2010)

    Article  Google Scholar 

  8. A.U. Khan, S. Zhao, G.L. Liu, J. Phys. Chem. C 120, 19353–19364 (2016)

    Article  Google Scholar 

  9. S.F. Ophélie, L. Gaëtan, B. Rabah, S. Sabine, A. Abdellatif, J. Phys. Chem. C 119, 28551–28559 (2015)

    Article  Google Scholar 

  10. N. Ahamad, A. Bottomley, A. Ianoul, J. Phys. Chem. C 116, 185–192 (2012)

    Article  Google Scholar 

  11. A.D. McFarland, R.P. Van Duyne, Nano Lett. 3, 1057–1062 (2003)

    Article  ADS  Google Scholar 

  12. P.Y. Wang, Y.J. Bai, C. Yao, Anal Chem. 89, 2583–2591 (2017)

    Article  Google Scholar 

  13. C.L. Du, C.J. Du, Y.M. You, Appl. Opt. 50, 4922–4926 (2011)

    Article  ADS  Google Scholar 

  14. A.K. Mishra, S.K. Mishra, Sens. Actuator B 237, 969–973 (2016)

    Article  Google Scholar 

  15. H. Chen, X. Kou, Z. Yang, W. Ni, J. Wang, Langmuir 24, 5233–5237 (2008)

    Article  Google Scholar 

  16. A.J. Haes, L. Chang, L.W. Klein, R.P. Van Duyne, J. Am. Chem. Soc. 127, 2264–2271 (2005)

    Article  Google Scholar 

  17. B. Sepúlveda, P.C. Angelomé, L.M. Lechuga, L.M. Liz-Marzán, Nano Today 4, 244–251 (2009)

    Article  Google Scholar 

  18. E.M. Purcell, C.R. Pennypacker, Astrophys. J. 186, 705–714 (1973)

    Article  ADS  Google Scholar 

  19. J.J. Goodman, B.T. Draine, P.J. Flatau, J. Opt. Lett. 16, 1198–1200 (1991)

    Article  ADS  Google Scholar 

  20. B.T. Draine, J.J. Goodman, Astrophys. J. 405, 685–697 (1993)

    Article  ADS  Google Scholar 

  21. P.J. Flatau, Opt. Lett. 22, 1205–1207 (1997)

    Article  ADS  Google Scholar 

  22. http://www.ddscat.org

  23. M.J. Collinge, B.T. Draine, J. Opt. Soc. Am. 21, 2023–2028 (2004)

    Article  ADS  Google Scholar 

  24. http://www.comsol.com

  25. C.L. Du, B.B. Wang, F. Sun, M.L. Huang, C.J. He, Y.W. Liu, X.J. Zhang, D.N. Shi, Sens. Actuators B 215, 142–145 (2015)

    Article  Google Scholar 

  26. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370–4739 (1972)

    Article  ADS  Google Scholar 

  27. C.L. Du, M.L. Huang, T. Chen, F. Sun, B.B. Wang, C.J. He, D.N. Shi, Sens. Actuators B 203, 812–816 (2014)

    Article  Google Scholar 

  28. Y.F. Chau, M.W. Chen, D.P. Tsai, Appl. Opt. 48, 617–622 (2009)

    Article  ADS  Google Scholar 

  29. Y.F. Chau, J.Y. Syu, C.T. Chao, H.P. Chiang, C.M. Lim, J. Phys. D 50, 045105 (2017)

    Article  ADS  Google Scholar 

  30. K. Bao, N.A. Mirtin, P. Nordlander, Appl. Phys. A 100, 333–339 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was finically supported by the Fundamental Research Funds for the Central Universities (No. NS2016074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChaoLing Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, S., Du, C. & Shi, D. Geometry and near-field coupling effects on the refractive-index sensitivities of individual Ag nanoparticle sensors. Appl. Phys. A 123, 672 (2017). https://doi.org/10.1007/s00339-017-1285-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1285-7

Keywords

Navigation