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Abstract. We show that the counter-propagating frequency-modulated (FM) waves of the same intensity
can split an orthogonal atomic beam into two beams. We calculate the temperature of the atomic ensemble
for the case when the atoms are grouped around zero velocity in the direction of the waves propagation.
The high-intensity laser radiation with a properly chosen carrier frequency can form a one-dimensional trap
for atoms. We carry out the numerical simulation of the atomic motion (two-level model of the atom-field
interaction) using parameters appropriate for sodium atoms and show that sub-Doppler cooling can be
reached. We suppose that such a cooling is partly based on the cooling without spontaneous emission in
polychromatic waves [H. Metcalf, Phys. Rev. A 77, 061401 (2008)]. We calculate the state of the atom in
the field by the Monte Carlo wave-function method and describe its mechanical motion by the classical
mechanics.

1 Introduction

The methods of laser control of atomic motion have been
developing rapidly for more than four decades starting
in 1970 by Ashkin in his paper [1], where he showed
that significant deviation of the atomic beam by laser
radiation is possible in the laboratory. Various ways to
control the mechanical motion of atoms and their cool-
ing are described, for an example, in reviews [2–5] and
textbooks [6,7]. The laser radiation used in experiments
may be monochromatic or polychromatic (bichromatic,
pulsed, amplitude- or frequency-modulated). For example,
in physical laboratories cold atoms are typically confined
by magneto-optical trap with monochromatic laser radia-
tion and magnetic field [7].

Recently it was shown that the sequences of counter-
propagating trains of light pulses can form a trap for
atoms [8–12]. Moreover, there is no need for addi-
tional fields to cool atoms down to the Doppler cooling
limit [13–15]. Two collinear standing waves of the equal in-
tensity and different frequencies are also expected to form
a trap for atoms, as was shown in [16,17]. These waves
can also be treated as a superposition of the counter-
propagating amplitude-modulated bichromatic waves. In
this case, as in the case of counter-propagating light
pulses, simultaneous confinement and cooling of atoms by
the same field are possible.

Light pressure force and behavior of atoms in the field
of frequency-modulated (FM) waves was investigated ear-
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lier in the papers [18–27]. Wide spectrum of FM radiation
allows to effective slow [18–21] and collimate [27] atomic
beams by FM waves.

A new and unexpected direction of research is a laser
cooling without the participation of the spontaneous emis-
sion, which was predicted in [28] and experimentally con-
firmed in [29,30] for an example of the interaction of He
atoms with the counter-propagating bichromatic waves.

The aim of this paper is to consider the various aspects
of the interaction of atoms with the counter-propagating
FM waves. In particular, we found that such light waves
can form a trap for atoms. Besides that, we predict laser
cooling of atoms by the counter-propagating FM waves be-
low Doppler limit for the specific parameters of the atom-
field interaction. The calculations were carried out for the
two-level model of the atom-field interaction using pa-
rameters appropriate for sodium atoms. The sub-Doppler
cooling of atoms in the field of FM-waves is caused, at least
in part, by laser cooling of the atomic ensemble without
the participation of the spontaneous emission.

We also study how the momentum diffusion affects
the motion of atoms and show that sometimes an atomic
beam, orthogonal to the direction of propagation of FM
waves, is divided into 2–3 beams contrary to the predic-
tion, based on the velocity dependence of the light pres-
sure force, of grouping of atoms around the zero velocity.
The atomic ensemble temperature corresponding to the
degree of freedom along the direction of wave propagation
is calculated analytically (weak field) and numerically.
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Fig. 1. The scheme of the interaction of an atom with the
counter-propagating FM waves. The atom (indicated by cir-
cle) near the point O is subjected to the field of the counter-
propagating waves 1, 2 obtained from the same radiation
source. The optical paths of the counter-propagating waves to
the center of the trap (the point O in the figure) are equal. The
instant frequencies of the oncoming waves are equal to �1, �2;
ω0 is the transition frequency of the atom.

We use the quasiclassical approximation for numerical
simulation of the statistical characteristics of an atomic
ensemble. The mechanical motion of atoms is described
by classical mechanics taking into account the stochas-
tic changes of the atomic momentum due to spontaneous
emission. The state of the atom is calculated by Monte
Carlo wave-function method [31].

The paper is structured as follows. In the next section,
the scheme of the atom-field interaction is described, the
basic equations used in the paper are presented in the
third section, the temperature of the atomic ensemble in
the field of low-intensity laser radiation is calculated in
the fourth section. The fifth section describes the Monte
Carlo wave function method, the sixth section gives the
procedure for numerical calculation. The results obtained
in the paper are discussed in seventh section. Finally, there
is a brief summary.

2 Scheme of the atom-field interaction

We assume that an atom interacts with the counter-
propagating FM waves 1, 2 obtained from the same ra-
diation source (Fig. 1). The frequencies of the waves are
modulated by the sinusoidal law. Keeping in mind the
possible formation of a trap for atoms by these waves, we
consider the motion of atoms near the point O in which
the counter-propagating waves come with the same phase.
As a result, the force exerted on the atom in the point O is
equal to zero. Below we show that the counter-propagating
FM waves can confine atoms in a small region near point
O (the center of the trap), provided that the parameters
of the atom-field interaction are properly chosen.

3 Main equations

Consider an atom in the field of two counter-propagating
FM waves produced by the same source. As a result, each
of them repeats the other with some time delay. The origin
of the coordinates is situated in the point O (see Fig. 1),

where this delay is equal to zero. The strength of the elec-
tric field exerted on the atom in the point z equals

E =
1
2
eE0

[
exp (iωt− ikz + iϕ1)

+ exp (iωt+ ikz + iϕ2)
]
+ c.c. (1)

Here ω is the carrier frequency of the counter-propagating
waves, k = ω/c is the wave vector, e is the unit vector of
the polarization, E0 is the amplitude of the electric field,

ϕ1 = β sin [Ωm (t− z/c)] , (2)
ϕ2 = β sin [Ωm (t+ z/c)] , (3)

Ωm is the modulation frequency, β is the modulation in-
dex. The instant frequencies of the counter-propagating
waves are

�1 = ω + ϕ̇1 = ω + βΩm cos [Ωm (t− z/c)] , (4)
�2 = ω + ϕ̇2 = ω + βΩm cos [Ωm (t+ z/c)] . (5)

These instant frequencies are the same, in particular, in
z = 0 (the point O, i.e. the center of the trap) and points
with z-coordinate equal to multiple of 2πc/Ωm.

We use the two-level model of the atom. The energy
difference between ground |1〉 and excited |2〉 states is �ω0.
The light pressure force on the atom along the z axis is
given by the formula [6,7]

F = (�12d21 + �21d12)
∂E

∂z
, (6)

where d12 and d21 are the matrix elements of the dipole
moment, �12 and �21 are the nondiagonal elements of the
density matrix �. The atom moves according to Newton’s
law

v̇ = F/m, (7)
where m is the mass of the atom, v is its velocity and F
is described by equation (6).

We assume that the condition [6,32]

�
2k2

2m
� �γ, (8)

of the semi-classical treatment of the atomic motion is
valid. This criterion means that that the light-pressure
force is formed faster than the change of the atomic veloc-
ity will have a significant impact on its value (the heavy
atom approximation). Here γ is the rate constant of spon-
taneous emission.

After averaging over the period of the field’s oscilla-
tions 2π/ω0 the expression for the light pressure force
equation (6) becomes

F = �k Im
[
�12e

−iω0t+iδt
(
Ω∗

1e
ikz −Ω∗

2e
−ikz

)]
. (9)

Here Ω1 = ΩRe
iϕ1 , Ω2 = ΩRe

iϕ2 , ΩR = −d12eE0/�,
δ = ω0 − ω. The instantaneous Rabi frequencies Ω1, Ω2

can be written in the form of the Fourier series

Ω1(t− z/c) = ΩR

∞∑

n=−∞
Jn(β)einΩ(t−z/c), (10)

Ω2(t+ z/c) = ΩR

∞∑

n=−∞
Jn(β)einΩ(t+z/c), (11)

where Jn(β) are Bessel functions.
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The density matrix we calculate by two methods. We
found it from the density matrix equation

i�
∂

∂t
�jk =

∑

l

(Hjl�lk − �jlHlk) + i�
∑

l,m

Γjk,lm�lm (12)

with Hamiltonian H

H = �ω0|2〉〈2| − d12|1〉〈2|E(t) − d21|2〉〈1|E(t) (13)

and matrix Γ with nonzero elements

Γ12,12 = Γ21,21 = −γ/2,
Γ11,22 = −Γ22,22 = γ (14)

in our investigation of the atomic motion in the weak field.
These approach gives us the temperature of the atomic
ensemble. We use the probability amplitudes of the wave
function found by Monte Carlo wave-function method [31]
for constructing the density matrix in our numerical sim-
ulation of the atomic ensemble evolution. In this case we
solve the Schrödinger equation

i�
d

dt
|ψ〉 = H |ψ〉 (15)

with non-Hermitian Hamiltonian

HMC = H − i�γ

2
|2〉〈2|, (16)

and find the atomic state vector

|ψ〉 = c1 |1〉 + c2e
−iω0t |2〉 , (17)

taking into account the possible quantum jumps (see
Sect. 5). We express the elements of the density matrix
in terms of c1 and c2 by

�12 = c1c
∗
2e

iω0t, �21 = c2c
∗
1e

−iω0t (18)

and then use them in the expression (6) for the light pres-
sure force.

4 Atoms in a weak field

In this section, we analyze the behavior of the atomic en-
semble in the weak FM waves, ΩR � γ. First of all, we
estimate the temperature of the atomic ensemble. For this
purpose, we need to find the average decelerating force
exerted on the atom moving with a small velocity and
the average number of photons which are emitted spon-
taneously by the atom per unit time [33]. The average
number of the spontaneously emitted photons is deter-
mined by the population of the excited state. In order to
find these quantities, we analyze the population of the ex-
cited state and light pressure force exerted on the atom
in the weak field using the equations for the density ma-
trix. At the end of the section, we show that under certain
condition the light pressure force is directed towards the
point with coordinate z = 0, that is a prerequisite for the

formation of a trap for atoms by the counter-propagating
FM waves.

To calculate the light pressure force by equation (9),
we, first of all, solve the equation for density matrix (12).
After substitution of equations (13), (14) and (1) in
equation (12) and applying rotating wave approximation
(RWA) [34] we get

∂

∂t
�11 =

i

2
σ12e

iδt
(
Ω∗

1e
ikz +Ω∗

2e
−ikz

)

− i

2
σ21e

−iδt
(
Ω1e

−ikz +Ω2e
ikz

)
+ γ�22,

∂

∂t
σ12 =

i

2
(�11 − �22)e−iδt

(
Ω1e

−ikz +Ω2e
ikz

) − γ

2
σ12,

σ21 = σ∗
12, �11 + �22 = 1. (19)

Here
σ12 = �12e

−iω0t, σ21 = �21e
iω0t. (20)

The solution to equation (19) becomes quasistationary
when t � γ−1. To calculate the light pressure force (9)
up to the fourth order in the field strength, as it follows
from equation (19), we must calculate σ12, σ21 up to the
third order. In addition, we are interested in the popula-
tion of the excited state �22 up to the second order. Let us
introduce the parameter ε to denote the order of smallness
of Ω1, Ω2 in comparison with γ (at the end of the calcu-
lation, we put ε = 1). Then we can write the solution to
equation (19) and light pressure force equation (9) in the
form

�11 =
4∑

n=0

εn�
(n)
11 , �22 =

4∑

n=0

εn�
(n)
22 ,

σ12 =
3∑

n=0

εnσ
(n)
12 , f =

4∑

n=0

εnf (n). (21)

From equation (19) it is easy to see that

�
(0)
11 = 1, �

(1)
11 = 0, �

(0)
22 = 0, �

(1)
22 = 0,

σ
(0)
12 = 0, f (0) = 0. (22)

The first order in ε of equation (19) gives

∂σ
(1)
12

∂t
=
i

2
Ω1e

−iδt−ikz +
i

2
Ω2e

−iδt+ikz − γ

2
σ

(1)
12 ,

∂σ
(1)
21

∂t
= − i

2
Ω∗

1e
iδt+ikz − i

2
Ω∗

2e
iδt−ikz − γ

2
σ

(1)
21 . (23)

The solution to equation (23) is

σ
(1)
12 (t) = σ

(1)
12 (0) +

i

2

t∫

0

e
1
2γ(t′−t)

(
Ω1(t′1)e

−iδt′−ikz′

+Ω2(t′2)e
−iδt′+ikz′)

dt′,

σ
(1)
21 (t) = σ

(1)
21 (0) − i

2

t∫

0

e
1
2γ(t′−t)

(
Ω∗

1(t′1)e
iδt′+ikz′

+Ω∗
2(t′2)e

iδt′−ikz′)
dt′, (24)
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where z′ is the coordinate of the atom at time t′, t′1 =
t′−z′/c, t′2 = t′+z′/c. Substituting equations (24) into (9)
and taking into account equation (20), we find the light
pressure force of in the second order in the field:

f (2) = − i

2
�k

(
Ω∗

1σ
(1)
12 e

iδt+ikz −Ω1σ
(1)
21 e

−iδt−ikz
)

+
i

2
�k

(
Ω∗

2σ
(1)
12 e

iδt−ikz −Ω2σ
(1)
21 e

−iδt+ikz
)
. (25)

Let an atom moves with a velocity v. Then in a small time
interval we can assume that z = z0 + vt, z′ = z0 + vt′.
Substituting (24) in (25) and averaging the force over the
wavelength, we find the value of the steady-state force
that is achieved when t � γ−1. After averaging over the
modulation period of 2π/Ωm, it becomes

f̃ (2) =
1
2

Re
∞∑

n=−∞

�kΩ2
RJ

2
n(β)

1
2γ − i [δ − nΩm + (k + nκ)v]

− 1
2

Re
∞∑

n=−∞

�kΩ2
RJ

2
n(β)

1
2γ − i [δ − nΩm − (k + nκ)v]

(26)

where κ = Ωm/c. As far as usually the ratio κ/k is less
than 10−5, we neglect κ/k in the following calculations. At
a low velocity of the atom, the expression (26) becomes

f̃ (2) = −
∞∑

n=−∞

�k2γΩ2
RδnvJ

2
n(β)

(
1
4γ

2 + δ2n
)2 , (27)

where δn = δ−nΩm = ω0−ω−nΩm is the detuning of n-
th spectral component of the FM wave from the frequency
of the atomic transition.

If the modulation frequency is high in comparison with
the spectral width of the absorption line of the atom,
Ωm � γ, the light pressure force is mostly determined by
the term with a minimum value of |δn| in the sum (27). In
this case, the decelerating force occurs when the frequency
of the spectral component of the radiation which is closest
to the frequency ω0 is less than ω0 (red detuning). This is
a well-known result in the theory of the Doppler cooling
of atoms by a monochromatic standing wave [7].

From equations (19), we find the equation for the pop-
ulation of the excited state in the second order in ε:

∂

∂t
�22 = − i

2
σ12e

iδt
(
Ω∗

1e
ikz +Ω∗

2e
−ikz

)

+
i

2
σ21e

−iδt
(
Ω1e

−ikz +Ω2e
ikz

) − γ�22. (28)

Solving equation (28) with the non-diagonal density ma-
trix elements given by equations (24), we find the popula-
tion of the excited state �(2)

22 of a slow (kv � γ) atom. We
are interested in the averaged over the wavelength steady-
state value of the light pressure force that is achieved when
t � γ−1. After additional averaging over the modulation
period of 2π/Ωm, the population becomes

�̃
(2)
22 =

1
2

∞∑

n=−∞

Ω2
RJ

2
n(β)

1
4γ

2 + δ2n
. (29)

Now we know the rate of spontaneous emission of pho-
tons γ�̃22, and from this we can calculate the momentum
diffusion coefficient [33]

Dp =
1
2
(�k)2(1 +Q+ ξ)γ�̃22, (30)

which quantifies the time dependence of the mean-squared
momentum deviation p from its mean value 〈p〉,

〈(p− 〈p〉)2〉 = 2Dpt. (31)

In equation (30) the Mandel parameter Q takes into ac-
count the non-Poisson statistics of scattered photons. For
the intensities considered here, it is small and we neglect
Q in the following calculations. Parameter ξ is determined
by the angular distribution of scattered photons. For an
one-dimensional model that we study, when photons can
scatter in two opposite directions along the propagation of
the light waves, ξ = 1. It is for this model the well-known
formula for the minimal temperature of atoms in the field
of the standing wave

TD =
�γ

2kB
, (32)

is valid. Here kB is the Boltzmann constant.
Taking into account that at low atomic velocity, v �

γ/k, the decelerating force, according to equation (27),
equals

f̃ (2) = −αv, (33)

where

α =
∞∑

n=−∞

�k2γΩ2
RδnJ

2
n(β)

(
1
4γ

2 + δ2n
)2 , (34)

we calculate the temperature of the atomic ensemble [33]

T =
Dp

αkB
=

�

2kB

∞∑

n=−∞
J2

n(β)
(

1
4γ

2 + δ2n
)−1

∞∑

n=−∞
δnJ2

n(β)
(

1
4γ

2 + δ2n
)−2

, (35)

which is defined for positive values of T . In the case β = 0,
only Bessel function of zero order gives a contribution to
equation (35) and the temperature reaches the minimum
value equation (32) at

δ = δopt =
γ

2
. (36)

Minimal temperature equation (32) is also achieved in
β �= 0 case provided the condition Ωm � γ is satisfied and
the detuning δn of the corresponding spectral component
of FM waves from the frequency of the atomic transition is
close to equation (36) (of course, if the relative intensity
of this component J2

n(β) is not very small). In the case
Ωm/γ ≤ 1 we cannot derive the analytical expression for
the detunings δ which correspond to the local minima of
equation (35). We should note that it is this ratio of the
modulation frequency and the rate of spontaneous emis-
sion, which expands the range of the velocity where an
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Fig. 2. An example of the dependence of the temperature of
the ensemble of “heavy” atoms on the detuning δ in the field of
counter-propagating FM waves, calculated from equation (35)
for γ = 2π × 10 MHz, Ωm = 2π × 5 MHz. The modulation
index is β = 5 (solid curves) and β = 0 (dashed curve). Vertical
asymptotes of the depicted curves are marked with dots.

atom effectively interacts with the field, was proposed to
use for the collimation of an atomic beam [27].

Our calculation of the temperature of an atomic en-
semble is based on the assumption of an approximately
linear dependence of the light pressure force on the atomic
velocity near v = 0. As far as velocities of atoms lie mainly
in the range [−vrms, vrms], where vrms =

√
kBT/m, af-

ter calculation the temperature according to equation (35)
we should check how the velocity dependence of the light
pressure force (26) is close to linear within the specified
limits. Velocity range in which we check the consistency of
calculations narrows with increase of mass of the atom, so
we can say that equation (35) is valid for “heavy atoms”.

An example of the dependence of the temperature
of the ensemble of “heavy” atoms on the detuning δ of
the carrier frequency of the FM waves from the transi-
tion frequency of the atom according to equation (35) is
shown in Figure 2. The curves are separated by horizontal
gaps. These gaps arise from the oddness of function equa-
tion (35) with respect to δ. Indeed, if T > 0 for δ = δ1,
then equation (35) gives T < 0 for δ = −δ1. Therefore,
if the atomic ensemble is characterized by some tempera-
ture for δ = δ1, it cannot be described by temperature for
δ = −δ1. The dashed curve in Figure 2 shows the corre-
sponding dependence for the case of the monochromatic
waves (β = 0).

Let us check the consistency of the calculation of the
temperature from equation (35) for sodium atoms. We
choose two detunings at which the temperature is close
to the local minima for shown in Figure 2 dependen-
cies, δ/Ωm = 6 (δ/2π = 30 MHz) and δ/Ωm = 1.6
(δ/2π = 8 MHz). Figure 3 presents the dependencies of
the light pressure force on the velocity for these detun-
ings. The long-dashed curve in the figure shows the corre-
sponding dependence for the case of the monochromatic
waves and δ/Ωm = 1 (δ/2π = 5 MHz). As can be seen, at

−80 −60 −40 −20 0 20 40 60 80

−0.3

0

0.3

kv/2π (MHz)

f̃
(2

)
/
(h̄
k
Ω

2 R
/
Ω

m
)

Fig. 3. Dependencies of the light pressure force exerted on a
“heavy” atom in the field of counter-propagating FM waves on
the Doppler frequency shift kv, calculated from equation (26).
Parameters: γ = 2π × 10 MHz, Ωm = 2π × 5 MHz for all
curves, β = 5, δ = 2π × 8 MHz (solid curve), β = 5, δ =
2π × 30 MHz (dashed curve), β = 0, δ = 2π × 5 MHz (long-
dashed curve).

zero velocity the derivative of the force on the velocity at
δ/2π = 30 MHz much greater than at δ/2π = 8 MHz. In
the first case, the range in which the light pressure force
is linear on the velocity is much wider. The wavelength of
the atomic transition in 23Na is λ = 589.16 nm, Doppler
cooling limit is TD = 237.2μK [7]. Simple calculations
give vrms ∼ 12 m s−1 for the case δ = 2π × 8 MHz. This
greatly exceeds the interval of linearity about ∼1.2 m s−1.
At the same time in the case δ = 2π × 30 MHz we have
vrms ∼ 0.8 m s−1, that is significantly lower than the in-
terval of linearity about ∼6 m s−1. Similar calculation for
the case δ/2π = 5 MHz and β = 0 (long-dashed curve in
Fig. 3) shows that vrms in this case is much smaller than
the width of linear dependence of the light pressure force
on velocity near v = 0.

Thus, the consistency test for calculation of the atomic
ensemble temperature from equation (35) and the condi-
tion that this formula is valid, showed that when δ =
2π×30 MHz a stationary temperature of a sodium atomic
ensemble in the field of the counter-propagating FM waves
is achieved and, if δ = 2π × 8 MHz, equation (35) is not
consistent with the condition of its correctness. Moreover,
in the latter case, the formation of two subsets of the en-
semble of atoms with velocities close to ±10.25 m s−1 is
expected, since at these velocities the light pressure force
is zero and its derivative with respect to velocity is neg-
ative (see Fig. 3). Thus, we conclude that FM waves can
split down an atomic beam into two. Each of these beams
is characterized by the mean velocity along the direction
of wave propagation and, probably, temperature, calcula-
tion of which can be made similar to the above method,
linearizing the dependence of the light pressure force on
the velocity at near-zero values of the force.

Note that the dependence of light pressure force shown
in Figure 3 by solid curve resembles the dependence of
light pressure force in a strong standing monochromatic

http://www.epj.org
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wave considered in [6,35], where more than one zeros on
the dependence of force vs. velocity for some parame-
ters of the atom-field interaction was found. Therefore,
we conclude that some phenomena inherent to the atom’s
interaction with a strong standing wave can manifest
themselves in the interaction of atoms with weak coun-
terpropagating FM waves.

To analyze the possible formation of a trap for atoms
by the counter-propagating FM waves, we should find the
coordinate dependence of the light pressure force. For this
purpose, we calculate the force up to the fourth order on ε.
The derivation of the force f̃ (4) averaged over the modu-
lation period is similar to the derivation of equation (26).
For the resonant case of the interaction of slow (kv � γ)
atoms with the field and small modulation index the result
is [22,26]

f̃ (4) = − 4�kβ2Ω4
RΩ

4
m

γ2c
(
Ω2

m + γ2

4

)2 z. (37)

This force is written for z � c/Ωm. It is directed to-
wards the center of the trap (z = 0) and under favorable
conditions (small heating of the atoms due to the momen-
tum diffusion) tries to keep the atoms at z = 0, where
the counter-propagating waves “collide”. The magnitude
of the force and its direction depends on the time delay
2z/c between the counter-propagating waves in the point
where the atom is located that indicates the involvement
of both waves in the formation of the restoring force. A
simple interpretation of the force might be predominant
absorption of a photon of the wave traveling to the center
of the trap followed by the stimulated emission of a pho-
ton into the counter-propagating wave similar to the force
exerted on an atom in the trap formed by the sequences
of the counter-propagating laser pulses [8,9,15].

5 The state vector of the atom

Suppose that the state vector of the atom |ψ(t)〉 at time
t is normalized to unity. The state vector |ψ(t + Δt)〉 at
time t+Δt we find in two steps [31].

1. From Schrödinger’s equation (15), it follows that
after a sufficiently smallΔt the state vector |ψ(t)〉 becomes

|ψ(1)(t+Δt)〉 =
(

1 − iΔt

�
H

)
|ψ(t)〉. (38)

Because the Hamiltonian (16) is non-Hermitian, after time
step Δt the state vector ψ(1)(t+Δt) is not normalized to
unity. The square of its norm is

〈ψ(1)(t+Δt)|ψ(1)(t+Δt)〉 = 1 −ΔP, (39)

where

ΔP =
iΔt

�
〈ψ(t)|H −H+|ψ(t)〉 = γΔt|c2|2. (40)

2. In the second stage we take into account the pos-
sible quantum jump (spontaneous emission of a photon).

We introduce the random variable ε, which is uniformly
distributed between zero and one. If ε > ΔP (in most
cases, since ΔP � 1), the jump does not occur. We nor-
malize the state vector of the atom at time t+Δt and it
becomes

|ψ(t+Δt)〉 =
|ψ(1)(t+Δt)〉√

1 −ΔP
, ΔP < ε. (41)

If ε ≤ ΔP , the jump occurs and the wave state vector of
the atom reads

|ψ(t+Δt)〉 = |1〉, ΔP > ε. (42)

Substituting equations (17) and (16) in equation (15) gives

i�
d

dt
c1 = − d12Ec2e

−iω0t,

i�
d

dt
c2 = − d21Ec1e

iω0t − i�
γ

2
c2. (43)

After applying RWA (neglecting rapidly oscillating terms
∼e±2iω0t) [34] to equation (43) with the field described by
equation (1) and taking into account the definition of the
Rabi frequencies Ω1, Ω2 we arrive at

d

dt
c1 = − i

2
(
Ω1e

−ikz +Ω2e
ikz

)
c2e

−iδt,

d

dt
c2 = − i

2
(
Ω∗

1e
ikz +Ω∗

2e
−ikz

)
c1e

iδt − γ

2
c2. (44)

Solving equations (44) with the normalization after each
step of integration, we find the time dependence of c1,
c2 between quantum jumps. In the case when a quantum
jump occurs after the integration step, the probability am-
plitudes becomes c1 = 1, c2 = 0. The known probability
amplitudes allow to calculate the light pressure force ex-
erted on the atom and describe its motion by integrating
Schrödinger’s and Newton’s equations.

6 The procedure of numerical calculation

To simulate the atom’s motion, we solve equations (7)
and (44), where the light pressure force is given by equa-
tion (9) and the non-diagonal matrix elements are defined
by equation (18). To describe the motion of the atom, we
should also take into account a stochastic change of the
atomic momentum due to the momentum diffusion pro-
cess. In the case of low-intensity laser radiation, when the
population of the excited state is small, the light pres-
sure force and the coefficient of momentum diffusion are
equal to the sum of the quantities resulting from each of
the counter-propagating waves [36]. In this case, sponta-
neous emission occurs after each photon absorption, and
the fluctuations of the momentum due to the stimulated
processes occur as frequently, as fluctuations due to the
spontaneous radiation [6]. In our calculations we assume
that the atomic momentum changes by ±�k with equal
probability in the course of spontaneous emission. In the
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works [15,17,37] a similar procedure was the basis of com-
puter simulation of the atomic motion in the counter-
propagating light waves.

The described consideration of the momentum dif-
fusion process is valid, as noted above, for weak fields
ΩR < γ. In the case of high-intensity counter-propagating
waves we consider a momentum diffusion (momentum
fluctuations) by the similar way, bearing in mind that the
result should be treated as an estimation.

In summary, the calculation algorithm of the motion
of atoms in the field of the counter-propagating FM waves
consists of the following steps:

– Equations (7) and (44) are integrated by the Runge-
Kutta method of the fourth order.

– After every step we check whether a quantum jump
occurred, and the state vector is normalized.

– If a quantum jump occurred, the velocity of the atom
changes by

Δv = �k(ε1 − 0.5)/(M |ε1 − 0.5|)
+ �k(ε2 − 0.5)/(M |ε2 − 0.5|), (45)

where ε1,2 are random numbers, uniformly distributed
over the interval [0, 1].

One of the random numbers is responsible for the fluctu-
ation of the momentum due to a spontaneously emitted
photon, and the other is responsible for the fluctuation of
the momentum resulting from fluctuations of absorption
and stimulated emission of photons. As far as we use quasi-
classical approach, the simultaneous consideration of both
sources of the momentum fluctuations in equation (45)
does not affect the statistical characteristics of the atomic
ensemble. More details concerning fluctuations in the one-
dimensional model of spontaneous emission are discussed
in [37].

7 Results and discussion

We simulate the behaviour of sodium 23Na and cesium
133Cs atoms in FM field, in which the cyclic interaction of
the atoms with a laser radiation can be realized [7]. The
relevant parameters of the atom-field interaction are fol-
lowing. The wavelength for the transition 32S1/2–32P3/2

in a sodium atom is λ = 589.16 nm, the spontaneous emis-
sion rate is γ = 2π× 10 MHz, the Doppler cooling limit is
TD = 237.2 μK [7]. The wavelength for transition 62S1/2–
62P3/2 in a cesium atom is λ = 852.35 nm, the sponta-
neous emission rate is γ = 2π × 5.18 MHz, the Doppler
cooling limit is TD = 124.39 μK [7].

7.1 Low-intensity counter-propagating waves

When the counter-propagating waves are weak (Ω2
R �

γ2), the coordinate dependent part of the light pres-
sure force f̃ (4) (37) is small in comparison with the part
f̃ (2) (26) of the light pressure force which depends only

on the atom’s velocity. Thus, using fields of low intensity
we can control predominantly the velocity distribution of
atoms. At a high modulation frequency, Ωm � γ, when
the atoms interact mainly with the closest to ω0 spectral
component of the field, their movement is essentially the
same as the well-studied [6,7] motion of atoms in the field
of the monochromatic standing wave. In the case Ωm ≥ γ,
the atoms interact with several spectral components of the
field, that greatly extends the interval of their velocities
in which the atom-field interaction is significant. This cir-
cumstance is the basis for the proposal of using “white
light” to control the atomic motion [18,21,27]. In this sub-
section, we calculate the temperature of the degree of free-
dom of the atoms along the direction of the FM waves
propagation and consider some aspects of the motion of
atoms in such waves.

In Section 4 we have shown that the equation (35)
for the temperature of the atoms is valid when vrms lays
in the interval in which the force exerted on the atom
is approximately proportional to its velocity. In this case
vrms ∝M−1/2, and we conclude that the equation (35) is
valid if the mass of atom is large enough (“heavy atom”
model). Strictly speaking, a priory we don’t know for each
specific case if equation (35) gives the right result. The
verification procedure is the following. We calculate the
temperature of the atomic ensemble according to equa-
tion (35). Then we find vrms and check if the light pres-
sure force linearly depends on the atomic velocity, as it
was described in Section 4. In case of a positive answer
equation (35) gives the right result. In this section we
check equation (35) by comparing it with the tempera-
ture found from the numerical calculation of the statisti-
cal parameters of atoms (including vrms). We show that
for some parameters of the atom-field interaction the ex-
pression equation (35) is correct for Na and Cs, and for
other parameters it gives correct result only for Cs atoms.
Figure 4 illustrates this. We see that for detunings corre-
sponding to the second and the third curves in Figure 4
we cannot talk about the temperature of the ensemble
of sodium atoms, but can talk about the temperature of
the cesium atoms. The reason is very simple. The cesium
atomic mass is much greater than the sodium atomic mass,
and the rate of spontaneous emission of a cesium atom is a
half of the rate of spontaneous emission of a sodium atom.
As a result, the light pressure force exerted on a cesium
atom almost linearly depends on its velocity in the inter-
val [−vrms, vrms], unlike the light pressure force exerted
on a sodium atom. This is illustrated by Figure 5, which
shows the dependence of the light pressure force exerted
on sodium and cesium atoms on their velocity for param-
eters of Figure 4 and δ/Ωm = 1.6 (the circle on the third
curve in the figure).

As can be seen in Figure 5, the velocity distribution
of sodium atoms after 10 ms of the atom-field interaction
is much wider and the corresponding distribution of ce-
sium atoms is much narrower than the interval of almost
linear dependence of the light pressure force on the veloc-
ity of atoms (compare (a) with (b) and (c) with (d) in
Fig. 5). It should be noted that the distribution of cesium
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Fig. 4. The dependence of the temperature of the atomic en-
semble of 100 133Cs atoms (circles) and 100 23Na atoms (crosses
and full circles) in units of the Doppler cooling limit temper-
ature TD on the carrier frequency detuning of the FM wave
from the atomic transition frequency in units of the modu-
lation frequency. Solid and dashed curves display calculation
by equation (35), crosses, circles and full circles are results of
the numerical calculations described in Section 6. Parameters:
Ωm = 0.5γ, ΩR = 2π × 2 MHz and β = 5 (solid curve, crosses
and circles), β = 0 (dashed curve and full circles).
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Fig. 5. The dependence of the light pressure force exerted
on sodium (a) and cesium (c) atoms on their velocity in the
field of the counter-propagating FM waves and the correspond-
ing distribution of 100 sodium (b) and cesium (d) atoms with
zero initial velocity in the phase plane after 10 ms of their in-
teraction with the field. Parameters are Ωm = 0.5γ, β = 5,
ΩR = 2π × 2 MHz, δ/Ωm = 1.6.

atoms in the phase plane, shown in Figure 5d, is formed
after 4 ms of the interaction of atoms with the field while
the distribution of sodium atoms after 10 ms is not yet
established; the sodium atoms are moving from the area
near zero velocity to the areas of about 10 m s−1 veloc-
ity. This phenomenon is due to the phase modulation of
the counter-propagating waves; in the field of waves with
the same parameters but β = 0, according to our calcu-
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Fig. 6. The dependence of the light pressure force exerted
on sodium atoms on their velocity in the field of the counter-
propagating FM waves (a) and the corresponding distribution
of 100 sodium atoms with zero initial velocity in the phase
plane after 10 ms of their interaction with the field (b). Pa-
rameters: Ωm = 2π × 5 MHz, β = 5, ΩR = 2π × 2 MHz,
δ = 2π × 14 MHz.

lations, sodium atoms moves with close to zero velocity
with Δv = 0.32 m s−1.

There are intervals in which the temperature of the
atomic ensemble in Figures 2 and 4 is not defined (for-
mula (35) yields a negative value), because the deriva-
tive of the light pressure force with respect to the velocity
at v = 0 is positive. However, the negative derivative of
the force can be achieved at non-zero velocities (denote
them by ṽn, n = 1, 2), as shown in Figure 6a. When the
velocity of the atom deviates from the value that corre-
sponds to the zero force, e.g., ṽ1, the force tries to re-
turn the velocity to ṽ1. Fluctuations of the velocity due
to the spontaneous emission lead to the formation of an
ensemble of atoms with close to ṽ1 velocity. If the initial
velocity of all atoms in the ensemble is zero, two sub-
ensembles consisting of approximately equal amounts of
atoms will be formed at velocities which are close to ṽ1,
ṽ2 (see Fig. 6b) with Δv = 0.52 m s−1 that corresponds to
T ≈ 3.1TD = 740 mK. For comparison, we also modelled
the motion of atoms in the field of counterpropagating
waves with the same parameters but β = 0. According
to our calculations, all sodium atoms moves with close to
zero velocity with Δv = 0.38 m s−1 and the length of the
atomic cloud is ∼2 mm at t = 10 ms.
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Fig. 7. The time dependencies of (a) the mean velocity of 23Na
atoms (1) and the standard deviation of the atomic velocities
from the mean velocity (2), (b) the mean coordinates of the
atoms (1) and the standard deviation of the atomic coordinates
from the mean coordinate (2) calculated for 100 sodium atoms
with an initial velocity of 10 m s−1. (c) The distribution of
atoms in the phase plane after 100 ms of their interaction with
the field. Parameters: Ωm = 2π × 50 MHz, β = 0.5, ΩR =
2π × 50 MHz, δ = 2π × 25 MHz.

Figure 6 shows that the counter-propagating FM waves
can split a collimated atomic beam into two roughly equal
parts if the FM waves travel perpendicular to the motion
of the atoms in the beam. Obviously, it is not difficult to
group almost all atoms near ṽ1 or ṽ2. For this purpose,
the angle between the direction of propagation of laser
radiation and the direction of motion of the atoms in the
collimated beam should be a little different from 90◦.

7.2 High-intensity counter-propagating FM waves

When the intensity of the counter-propagating FM waves
becomes high, the field may confine atoms. Figure 7
demonstrates this. Sodium atoms start to move with the
initial velocity of 10 m s−1 in the point with coordinate
z = 0. The FM waves quickly decelerate them (within
50 μs). The velocity distribution of the atoms becomes sta-
tionary with the root-mean-square deviation of the atomic
velocities from zero value of Δv = 1.1 m s−1, which corre-
sponds to the temperature of the atomic ensemble 3.2 mK.
The size of the atomic cloud is stabilized after about
50 ms. The root-mean-square deviation Δz of the coor-
dinates of atoms from the mean coordinate 〈z〉 is about
0.8 mm. The distribution of atoms in the phase plane,
shown in part (c) of the figure, is approximately uniform
over the coordinate within the interval ±1.5Δz and over
the velocity within the interval ±1.5Δv that confirms the
applicability of the concept of temperature to the atomic
ensemble. For comparison, we also modelled the motion of
atoms in the field of counterpropagating waves with the
same parameters but β = 0. According to our calculations,
all sodium atoms moves with close to 2.4 m s−1 velocity
with Δv = 0.31 m s−1 and quickly leave the vicinity of
z = 0 (after 10 ms their average coordinate is 24 mm).

Figure 6 shows a situation when atoms with close to
zero velocity are absent in the ensemble. In this case, we
cannot use Δv to estimate the temperature of atoms in
the ensemble. Figure 8 shows the temporal evolution of
the mean velocity and the mean coordinate of the atomic
ensemble and the standard deviations of velocities and co-
ordinates of the atoms from these values, as well as the
distribution of atoms in the phase plane after 100 ms of
their interaction with the field for a similar situation. The
velocity distribution of atoms, in this case, is very far from
Maxwell’s, therefore we cannot talk about the tempera-
ture of the atomic ensemble. The standard deviation of
the atomic velocities from the mean velocity reaches a
stationary value after about 5 ms of the atom-field in-
teraction, and the mean velocity within about 2 ms re-
duces to zero and then varies approximately in the range
±1 m s−1 (part (a) of Fig. 8). As far as the main part of
atoms are distributed close to velocities vc = +3 m s−1

and −vc = −3 m s−1, one would think that the counter-
propagating FM waves split the atomic ensemble into two
sub-ensembles (part (c) of Fig. 8). But in this case, the
root-mean-square deviation of coordinates from z = 0
would increase with time. Nevertheless, it remains, begin-
ning from about 5 ms, approximately at the same level.
We explain this by a change of the velocity of the atoms
between ∼−vc m s−1 and ∼+vc m s−1 from time to time.
This transition is not instantaneous, as is confirmed by
a small number of atoms in the vicinity of zero velocity
in Figure 8c. From our point of view, the light pressure
force exerted on atoms is close to zero at velocities ±vc.
As a result, the atoms move mostly with almost constant
velocity. From time to time, the velocity of such atoms
changes due to the momentum diffusion process. Some-
times momentum fluctuations change the sign of the veloc-
ity. Then the light pressure force changes the sign and the
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Fig. 8. The time dependencies of (a) the mean velocity of 23Na
atoms (1) and the standard deviation of the atomic velocities
from the mean velocity (2), (b) the mean coordinate of the
atoms (1) and the standard deviation of the atomic coordinates
from the mean coordinate (2) calculated for 100 sodium atoms
with the initial velocity of 10 m s−1. (c) The distribution of
atoms in the phase plane after 100 ms of their interaction with
the field. Parameters: Ωm = 2π × 50 MHz, β = 0.5, ΩR =
2π × 50 MHz, δ = 2π × 35 MHz.

atomic velocity tends to the other almost constant value
(+vc → −vc and vice versa). We also examined the motion
of atoms in the field of counterpropagating waves with the
same parameters but β = 0. According to our calculations,
all sodium atoms moves with close to 3.2 m s−1 velocity
with Δv = 0.33 m s−1 and quickly leave the vicinity of
z = 0 (after 10 ms their average coordinate is 32 mm).
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Fig. 9. The time dependences of the velocity and the coor-
dinate of a sodium atom for δ = 2π × 25 MHz (a, b) and
δ = 2π × 35 MHz (c, d). Parameters: Ωm = 2π × 50 MHz,
β = 0.5, ΩR = 2π × 50 MHz.

Figure 9 illustrates the motion of a trapped atom for
parameters corresponding to Figure 7, where the temper-
ature of atoms is correctly defined, and Figure 8, where
the atoms, though confined in the trap, cannot be char-
acterized by temperature. We see that in the first case
(Figs. 9a and 9b) the movement of the atom looks like
diffusion. In the second case (Figs. 9c and 9d) the motion
of the atoms consists of pieces of almost uniform motion
with the change of the sign of the velocity during a very
short time.

Figure 10 shows examples of the dependence of the
temperature of sodium atoms on the detuning of the car-
rier frequency of FM waves from the transition frequency
of the atom. The temperature of the atoms is defined by
the formula

1
2
kBT =

1
2
m〈v2〉, (46)

where 〈v2〉 is the mean square of the velocity of atoms. The
stationary (up to fluctuations) value of 〈v2〉 is achieved
after 20–50 μs. Doppler cooling limit corresponds to the
square root of the mean squared velocities of atoms vD =
29.47 cm s−1 [7].

Equation (46) gives the temperature of atoms in the
case of the Maxwell’s velocity distribution. In other cases
the “temperature” given by equation (46) refers to the av-
erage kinetic energy of the atoms. In particular, the veloc-
ity distributions of atoms for β = 0.5, ΩR/2π = 50 MHz
in the range of detuning of 35–45 MHz and for β = 0.5,
ΩR/2π = 20 MHz in the range of detuning of 15–45
MHz are far from Maxwell’s distribution function. In some
cases, the velocity distribution function is symmetric with
respect to zero velocity and has two maxima, like demon-
strated in Figure 8c.

We cannot find the temperature of atoms if their mean
squared velocity continuously grows. For example, we can-
not calculate the temperature of atoms for β = 0.5,
ΩR/2π = 20 MHz and detuning to the left of the first
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Fig. 10. The dependence of the temperature of sodium atoms
on the detuning δ of the carrier frequency ω of the counter-
propagating FM waves from the transition frequency ω0 of the
atom. Parameters: Ωm = 2π × 50 MHz, β = 0 (�, �), β =
0.5 (�, •), β = 1 (�, ◦), ΩR = 2π × 50 MHz (�, �, �),
ΩR = 2π × 20 MHz (•, ◦, �). The temperature is calculated
for 100 sodium atoms with the initial velocity of 5 m s−1.
The rectangular near δ = −2π × 40 MHz marks the interval
of detuning where the temperature is lower than the Doppler
cooling limit.

point on the plot, as far as almost all atoms have a sub-
Doppler temperature but a small number of them accel-
erates to the velocity of about 100 m s−1 after 10 ms
of their interaction with the field. Except for a small in-
terval −41 MHz ≤ δ/2π ≤ −38 MHz for β = 0.5 and
ΩR/2π = 20 MHz, the temperature of atoms in the field
of FM waves for the parameters of the atom-interaction
corresponding to Figure 10 exceeds the Doppler cooling
limit TD. A probable cause of the unexpectedly low tem-
perature in the region of δ, marked with a rectangular
near δ = −2π × 40 MHz, we discuss below.

Figure 11 shows the time dependence of the mean ve-
locity and the root-mean-square deviation of the velocities
of atoms from the mean velocity in cases where the tem-
perature of the atomic ensemble is higher than the Doppler
cooling limit (a) and lies below it (b). In part (a) of Fig-
ure 11 the time dependence of Δv achieves the mean value
of around 0.38 m s−1 and fluctuates near it with a small
amplitude, which allows estimating the temperature of an
atomic ensemble of about 1.7TD. For part (b) of the fig-
ure our calculations give Δv which is far below the recoil
velocity vr = �k/m. It means that the de Broglie wave-
length of atoms exceeds λ and quasiclassical approach is
not valid. Nevertheless, obtained results clearly show that
the temperature of atoms is substantially lower than the
Doppler cooling limit (in the opposite case we would find
Δv > vr).

Parts (c) and (d) of Figure 11 show distributions of
atoms in the phase plane, corresponding to parts (a) and
(b). In part (c) of Figure 11 the velocity distribution of
atoms is close to Maxwell’s distribution function. Notice-
able displacement of the center of mass of the atoms in
the positive direction is associated with their initial ve-
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Fig. 11. The time dependence of the mean velocity (lower
curve, blue online) and standard deviation of velocity (up-
per curve, red online) from the mean value for an ensemble
of 100 sodium atoms in the field of counter-propagating FM
waves. The detuning of the carrier frequency from the tran-
sition frequency of the atom is δ = −2π × 32 MHz (a) and
δ = −2π × 38 MHz (b). The appropriate distributions of
atoms in the phase plane after 10 ms from the beginning of
the movement are shown in parts (c) and (d) of the figure.
Other parameters of the interaction of atoms with the field are
Ωm = 2π × 50 MHz, β = 0.5, ΩR = 2π × 20 MHz, the initial
velocity of the atoms is v0 = 5 m s−1.

locity. In part (d) of Figure 11 the velocity distribution
of atoms is obviously not Maxwell’s. Here the velocity
of atoms lays below vr that means that quantum treat-
ment of atomic motion is needed. Slow atoms are grouped
near the nodes of the standing wave that is formed by
the counter-propagating FM waves, and predominantly
occupy the ground state. The position of the nodes are
described by the expression zn = 1

2λn+ 1
4λ where n is an

integer.
Note that when β = 1, ΩR/2π = 20 MHz and detun-

ing lies in the interval −40 MHz ≤ δ/2π ≤ −34 MHz, a
part of atoms are grouped near zero velocity, as illustrated
above for the case β = 0.5 and ΩR/2π = 20 MHz, but
their quantity is insufficient for reducing the temperature
of atoms below the Doppler cooling limit (see Fig. 10).

Figure 12 shows examples of time dependencies of the
velocity of a sodium atom used in the calculation of parts
(a) and (b) of Figure 11. When the detuning of the car-
rier frequency from the transition frequency of the atom
equals δ = −2π × 32 MHz, the atom quickly decelerates
during 35 μs (Fig. 12a) and then its velocity oscillates
predominantly in the range of ±0.5 m s−1. In this case,
the velocity distribution of atoms is close to Maxwell’s
(see Fig. 11c). When the detuning is δ = −2π × 38 MHz
(parts (b) and (d) of the figure), the situation is radically
different. Although the atom decelerates during approxi-
mately the same time, later the velocity of the atom de-
creases to the value of about 0.1 m s−1 and stochastic
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Fig. 12. Examples of time dependencies of velocity of sodium
atoms used in the calculations of Figures 11a and 11b. Frames
(c) and (d) show parts of these dependencies on a larger scale.
Parameters: Ωm = 2π× 50 MHz, β = 0.5, ΩR = 2π× 20 MHz,
δ = −2π × 32 MHz (a) and δ = −2π × 38 MHz (b), the initial
velocity of atoms is v0 = 5 m s−1.

changes from time to time due to diffusion in momentum
space. After all, the velocity becomes less than vr. The
period of oscillation of atoms near z = 0 is about 1.2 μs.
They occur in the vicinity of field nodes. It is noteworthy
that between sudden changes of the velocity due to spon-
taneous emission events, the movement of the atom looks
like a damping oscillation in part (d) of Figure 12. In our
opinion, this corresponds to a cooling of atoms without
the participation of the spontaneous emission, predicted
in [28], demonstrated experimentally in [29,30] and numer-
ically simulated in [30] within the quasiclassical approach.

8 Conclusions

We theoretically studied the atomic motion in the field of
counter-propagating frequency-modulated waves, one of
which repeats the other. In this study, we analyzed the
statistical properties of the atomic ensemble. We simulate
the trajectory of each atom using the quasiclassical ap-
proximation. The stochasticity of the atomic motion arises
due to spontaneous emission of photons by excited atoms.
We calculate the atomic state by the Monte Carlo wave-
function method [31] and describe the mechanical motion
of atoms by the Newton’s law. As it turns out, accounting
for the momentum diffusion of atoms, which is more pro-
nounced for light atoms, can drastically change the overall
pattern of the atomic motion in comparison with an analy-
sis based only on the light pressure force exerted on atoms
in the light waves. For example, sometimes we expect split-
ting of the atomic beam by orthogonally propagating FM
waves instead of its collimation, if the derivative of the
light pressure force with respect to velocity at zero veloc-
ity is positive.

Counter-propagating FM waves can cool atoms just as
it occurs in a monochromatic standing wave but with a

much more complicated dependence of the temperature
on the carrier frequency detuning from the transition fre-
quency of the atom. There is a region of parameters of
the atom-field interaction where our calculations predict
sub-Doppler cooling of the atoms. We explain this phe-
nomenon by laser cooling without the participation of
spontaneous radiation, as predicted in [28] and experimen-
tally confirmed in [29,30] for helium atoms in the field of
bichromatic waves.

The counter-propagating FM wave can form a one-
dimensional trap for atoms provided that the intensity
of these waves is large enough. The center of the trap is
situated in the point where the phases of the waves are
the same. At least two types of the atomic motion in the
trap are possible. The motion of the first type is approx-
imately characterized by the Maxwell distribution. The
temperature of atoms is approximately an order of mag-
nitude higher than the Doppler cooling limit and the size
of the area where the atoms are confined is about 1 mm.
Motion of the second type is characterized by the veloc-
ity distribution of atoms with two maxima and a small
number of them around the zero velocity. This distribu-
tion cannot be characterized by a certain temperature. In
this case the atoms move near the center of the trap in
the area with the size of about 1 cm.

We modelled the behaviour of Na atoms for the cy-
cling transition between two states [7]. Splitting of an
atomic beam is based on zero light pressure force for
nonzero velocity which obviously appears in any model
of the atom interaction with FM field, and we expect this
phenomenon to be observed for any multilevel model of
the atom-field interaction. Our previous investigation of
the trap based on counter-propagating light pulses [15]
or stochastic waves [37], one of which repeats the other,
led us to an hypothesis that any polychromatic counter-
propagating waves with discrete spectrum or waves de-
scribed by a stationary stochastic process, one of which
repeats the other, can form a trap for atoms [36]. So, we
expect that counter-propagating FM waves can also form
a trap for atoms in the case of a multilevel model of the
atom-field interaction too.

The interaction of an atom with the frequency modu-
lated light waves may cause the rapid adiabatic passage
between the atomic states if the conditions ΩR/Ωm �
β � (ΩR/Ωm)2, Ωm � γ are satisfied. In this case,
the FM waves acts on the atom like the sequences of
the counter-propagating chirped pulses [34] each of them
causes the transitions between the ground and excited
states with the accompanying change of the momentum
of the atom due to absorption or stimulated emission of
a photon [38]. Detailed investigation of this regime of the
atom-field interaction can be carried out when the descrip-
tion of the momentum diffusion process in the counter-
propagating waves of very high intensity within the scope
of the Monte Carlo wave function method will be devel-
oped. In this case, we expect the result of the atom-field
interaction to be close to the result of interaction of an
atom with the counter-propagating π-pulses [8,9,15].

http://www.epj.org
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