Skip to main content
Log in

Coherent cooling of atoms in a frequency-modulated standing laser wave: Wave function and stochastic trajectory approaches

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The wave function of a moderately cold atom in a stationary near-resonant standing light wave delocalizes very fast due to wave packet splitting. However, we show that frequency modulation of the field can suppress packet splitting for some atoms whose specific velocities are in a narrow range. These atoms remain localized in a small space for a long time. We demonstrate and explain this effect numerically and analytically. We also demonstrate that the modulated field can not only trap but also cool the atoms. We perform a numerical experiment with a large atomic ensemble having wide initial velocity and energy distributions. During the experiment, most of atoms leave the wave while the trapped atoms have a narrow energy distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kepler, The Harmonies of the World (Encyclopedia Britannica, Chicago, Illinois, United States, 1952).

    Google Scholar 

  2. J. C. Maxwell, A Treatise on Electricity and Magnetism (Dover, New York, 1954).

    MATH  Google Scholar 

  3. P. N. Lebedev, Collected Papers (GITTL, Moscow, 1949) [in Russian].

    Google Scholar 

  4. W. Gerlach and O. Stern, Z. Phys. 9, 349 (1922).

    Article  ADS  Google Scholar 

  5. P. L. Kapitza and P. A. M. Dirac, Proc. Cambridge Philos. Soc. 29, 297 (1933).

    Article  ADS  Google Scholar 

  6. O. Frisch, Z. Phys. 86, 42 (1933).

    Article  ADS  Google Scholar 

  7. A. B. Gaponov and M. A. Miller, Sov. Phys. JETP 7, 168 (1958).

    Google Scholar 

  8. G. A. Askaryan, Sov. Phys. JETP 15, 1088 (1962).

    Google Scholar 

  9. V. S. Letokhov, JETP Lett. 7(9), 272 (1968).

    ADS  Google Scholar 

  10. A. P. Kazantsev, Sov. Phys. JETP 36(5), 861 (1973).

    ADS  Google Scholar 

  11. A. P. Kazantsev, Sov. Phys. JETP 39(5), 784 (1974).

    ADS  Google Scholar 

  12. T. W. Hansch and A. L. Schawlow, Opt. Commun. 13, 68 (1975).

    Article  ADS  Google Scholar 

  13. D. J. Wineland and H. Dehmelt, Bull. Am. Phys. Soc. 20, 637 (1975).

    Google Scholar 

  14. V. S. Letokhov, V. G. Minogin, and B. D. Pavlik, Opt. Commun. 19, 72 (1976).

    Article  ADS  Google Scholar 

  15. V. S. Letokhov, V. G. Minogin, and B. D. Pavlik, Sov. Phys. JETP 45(4), 698 (1977).

    ADS  Google Scholar 

  16. A. P. Kazantsev, G. I. Surdutovich, and V. P. Yakovlev, Mechanical Action of Light on Atoms (World Scientific, Singapore, 1990).

    Book  Google Scholar 

  17. D. J. Wineland, R. E. Drullinger, and F. L. Walls, Phys. Rev. Lett. 40, 1639 (1978).

    Article  ADS  Google Scholar 

  18. S. V. Andreev, V. I. Balykin, V. S. Letokhov, and V. G. Minogin, JETP Lett. 34(8), 463 (1982).

    Google Scholar 

  19. V. I. Balykin, V. S. Letokhov, V. G. Minogin, and T. V. Zueva, Appl. Phys. 35, 149 (1984).

    Article  Google Scholar 

  20. B. D. Pavlik, Cold and Ultracold Atoms (Naukova Dumka, Kiev, 1993) [in Russian].

    Google Scholar 

  21. J. Dalibard and C. Cohen-Tannouudji, J. Opt. Soc. Am. B 6, 2023 (1989).

    Article  ADS  Google Scholar 

  22. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, Phys. Rev. Lett. 61, 826 (1988).

    Article  ADS  Google Scholar 

  23. W. Phillips and H. Metcalf, Phys. Rev. Lett. 48, 596 (1982).

    Article  ADS  Google Scholar 

  24. S. Chu, C. Cohen-Tannoudji, and W. D. Phillips, Rev. Mod. Phys. 70, 685 (1998).

    Article  ADS  Google Scholar 

  25. J. T. Tuoriniemi and T. A. Knuuttila, Phys. B: Condens. Matter 280, 474 (2000).

    Article  ADS  Google Scholar 

  26. R. Graham, M. Schlautmann, and P. Zoller, Phys. Rev. A: At., Mol., Opt. Phys. 45, R19 (1992).

    Article  ADS  Google Scholar 

  27. F. L. Moore, J. C. Robinson, C. Bharucha, P. E. Williams, and M. G. Raizen, Phys. Rev. Lett. 73, 2974 (1994).

    Article  ADS  Google Scholar 

  28. M. Raizen and D. A. Steck, Scholarpedia 6, 10468 (2011).

    Article  ADS  Google Scholar 

  29. R. Z. Sagdeev, D. A. Usikov, and G. M. Zaslavsky, Nonlinear Physics: From the Pendulum to Turbulence and Chaos (Harwood, New York, 1988).

    MATH  Google Scholar 

  30. G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics (Oxford University Press, Oxford, 2005).

    MATH  Google Scholar 

  31. Y.-T. Chough, S.-H. Youn, H. Nha, S. W. Kim, and K. An, Phys. Rev. A: At., Mol., Opt. Phys. 65, 023810 (2002).

    Article  ADS  Google Scholar 

  32. D. V. Brazhnikov, R. Ya. Il’enkov, O. N. Prudnikov, A. V. Taichenachev, A. M. Tumaikin, V. I. Yudin, A. N. Goncharov, and A. S. Zibrov, JETP Lett. 95(8), 399 (2012).

    Article  ADS  Google Scholar 

  33. S. V. Prants, J. Exp. Theor. Phys. 109(5), 751 (2009).

    Article  ADS  Google Scholar 

  34. V. Yu. Argonov, JETP Lett. 90(12), 739 (2009).

    Article  ADS  Google Scholar 

  35. V. Yu. Argonov, Phys. Lett. A 375, 1116 (2011).

    Article  ADS  MATH  Google Scholar 

  36. H. Ammann, R. Gray, I. Shvarchuck, and N. Christensen, Phys. Rev. Lett. 80, 4111 (1998).

    Article  ADS  Google Scholar 

  37. W. K. Hensinger, N. R. Heckenberg, G. J. Milburn, and H. J. Rubinsztein-Dunlop, J. Opt. B: Quantum Semiclassical Opt. 5, R83 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Argonov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argonov, V.Y. Coherent cooling of atoms in a frequency-modulated standing laser wave: Wave function and stochastic trajectory approaches. J. Exp. Theor. Phys. 119, 802–810 (2014). https://doi.org/10.1134/S1063776114110144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114110144

Keywords

Navigation